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Summary - The primary aim of this pilot study is not to provide definitive statements on Neanderthal 
kinematics, but rather to illustrate the potential of Procrustes Motion Analysis (PMA) combined with 
predictive modelling as a robust tool for addressing questions of functional morphology in the fossil record. 
We use this novel approach to model and compare the potential upper cervical spine (UCS) flexion-extension 
kinematics of the La Ferrassie 1 Neanderthal and modern humans. The study material comprised the 3D 
virtual morphology of the occipital base, atlas (C1), and axis (C2) of La Ferrassie 1 and the corresponding 
kinematic and morphological data from seven unembalmed modern human cadaveric specimens. We first 
used the PMA framework to analyze the shape-motion relationship in the modern human sample. This 
relationship was then used to build a predictive model. We applied this model to the UCS morphology of La 
Ferrassie 1—inferring its potential motion trajectory rather than measuring direct fossil kinematics—and 
statistically compared the results to the modern human mean. Contrary to previous hypotheses based solely 
on morphological inference, our model-based results challenge the assumption of reduced Neanderthal neck 
mobility. The inferred trajectory of flexion-extension for La Ferrassie 1 were statistically comparable to that 
of the modern human sample, suggesting no significant difference in this specific movement. This study 
demonstrates the utility of integrating empirical motion data, geometric morphometrics, and predictive 
modelling in paleoanthropology, offering a significant advance over traditional morphological inference. By 
successfully illustrating the application of PMA, this research provides a new framework for investigating 
hominin kinematics, while simultaneously emphasizing that the kinematics presented for the Neanderthal 
specimen were predicted and modelled, not directly measured.
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Introduction

The big picture in human evolution is most 
often related to paleoecology and fossil homi-
nins behavior, such as cannibalism (Villa et al. 
1986; Goldberg 1997; Fernández-Jalvo et al. 
1999; Vilaca 2000; Saladié et al. 2012), sick care 
(Kessler et al. 2017, 2018; Kessler 2020), child 
care (Gettler 2010; Kramer and Otárola-Castillo 
2015; Halcrow et al. 2020), use of fire (Sandgathe 
2017; Brittingham et al. 2019), hunting (Bunn 
and Pickering 2010; Kübler et al. 2015; Bartolini-
Lucenti et al. 2021) or locomotion patterns 
(Harcourt-Smith and Aiello 2004; Crompton 

et al. 2008; Raichlen et al. 2011; Stewart et al. 
2019). Inherent in any kind of behavior is the 
concept of motion. Even behaviors that may seem 
less obviously related to movement —such as car-
egiving or cannibalism— require specific bodily 
actions, including transport, manipulation, or 
postural adjustments, which are constrained by 
anatomical and biomechanical capabilities. As 
Tinbergen clearly stated: behavioral repertoires 
are the “total of movements made by the intact 
animal” (Tinbergen, 1951, p.2); therefore, quan-
titative analyses that enable statistical compari-
sons of motion are crucial to any study aiming 
to understand behavior and hominin evolution. 
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In the past, possible neck kinematic dif-
ferences between hominin species have been 
addressed mainly through the inference and 
interpretation of morphological characters, such 
as the location of ligament or muscle insertions 
and the robusticity of specific osteological fea-
tures (Gómez-Olivencia et al. 2013). Later, with 
the expansion of geometric morphometrics, the 
entire morphology and spatial relations of the 
bones began to gain importance in the analysis 
of morpho-functionality (Palancar et al. 2020b)
C1. Nowadays, more exhaustive analyses are 
using empirical motion data to address variations 
in hominins kinematics (Palancar et al. 2024; 
Taverne et al. 2024). Procrustes Motion Analysis 
(PMA) represents a robust method that combines 
geometric morphometrics with real motion data 
(Adams and Cerney 2007), and opens the way 
for future developments of morpho-functional 
studies related to hominin evolution.

During the last two decades of the twentieth 
century, human motion analysis gained signifi-
cant attention from researchers (Aggarwal and 
Cai 1999). Most of the studies carried out during 
those years were focused on one of the three areas 
related to motion analysis defined by Aggarwal 
and Cai (1998): (1) body structure and joint 
analysis, (2) tracking moving individuals or (3) 
recognition of human movements. Quantitative 
analyses of motion using geometric methods were 
not developed until the early 21st century (Slice 
2007). PMA was the first approach to functional 
analysis of motion and quantification of motion 
patterns through geometric morphometric tech-
niques (Adams and Cerney, 2007). PMA unifies 
the three areas described by Aggarwal and Cai 
(1998) as it analyzes the posture shapes (1, body 
analysis), the changes in posture from one time 
step to another (2, tracking) and the trajectory of 
motion (3, pattern recognition of movements), 
while also adding the possibility for statistical 
comparisons of the latter. PMA is based on the 
principle that “any motion can be represented 
by an ordered sequence of postures exhibited 
throughout the course of a motion” (Adams 
and Cerney 2007, p.438). This approach –or 
similar ones– has been applied to the study of 

feeding motion in fishes (Martinez et al. 2018), 
the ventricular heart cycle (Piras et al. 2014), the 
gait of scorpions (Telheiro et al. 2021) or even 
human gait (Waldock et al. 2016) and breath-
ing patterns (Gómez-Recio et al. 2024). These 
studies have shown that the shape of landmark 
configurations assigned to different postures of a 
motion trace a trajectory through morphospace 
(Gerber 2017) that quantifies the motion itself 
and identifies differences between individuals or 
groups. Despite its potential in analyzing differ-
ent motion patterns during human evolution, 
PMA has not yet been applied in a paleoanthro-
pological context.

Cervical spine morpho-functionality
The cervical spine is an important region 

of the vertebral column that supports the head, 
protects the upper spinal cord and is the attach-
ment site of various muscles involved in the 
kinematics of the upper limbs, thorax and head 
(White and Panjabi 1990). The cervical spine 
is usually described in two regions that can be 
differentiated developmentally, anatomically 
and functionally (White and Panjabi 1990): 
the upper cervical spine (UCS) combining the 
occipital atlantoaxial complex (i.e. occiput C0, 
atlas C1, axis C2)(Bernard et al. 2015) and lower 
cervical spine (i.e. C3 to C7). The lower cervical 
spine, which connects with the thorax, consists 
of five subaxial cervical vertebrae that show the 
typical cervical morphology (i.e. small vertebral 
body, uncinate processes, a triangular shape of 
the neural canal and transverse foramina) (White 
and Panjabi 1990). Superiorly, the two remain-
ing vertebrae of the UCS, atlas and axis, show a 
particular anatomy. The atlas lacks the vertebral 
body, substituted by the dens of axis, and does 
not present a spinous process. Additionally, the 
articular facets display specific shapes and orien-
tations compared to the subaxial cervical verte-
brae. Developmentally, there are three modules: 
superior (C1-C2), middle (C3-C5) and inferior 
(C6-C7), that have their embryonic origin in the 
somites and are regulated by Hox genes (Arnold 
et al. 2017; Randau et al. 2017). The cranial base 
is also derived from the somites and regulated by 
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the Hox1 gene and thus, it was proposed to be 
part of the superior module (Arnold et al. 2017; 
Randau et al. 2017; Villamil 2018). Functionally, 
two complexes can be differentiated: the superior 
one, formed by the occipital condyles, atlas, and 
axis, where rotation is the principal motion; and 
the inferior one, formed by the subaxial cervi-
cal vertebrae, where lateral bending and flexion-
extension are more determinant (White and 
Panjabi 1990). Thus, the upper cervical spine is 
a singular complex that can be isolated from the 
rest of the column to perform exhaustive analyses 
on it, due to its particular conditions: anatomy 
and function. 

During the last decade, several works have 
increased the knowledge on the variability, allom-
etry and integration patterns of the hominid cer-
vical vertebrae (Gómez-Olivencia et al. 2013; 
Arlegi et al. 2018; Meyer et al. 2018; Villamil 
2018; Palancar et al. 2020a,b). Specifically, 
Neanderthal cervical vertebrae present several 
differences compared with modern humans, such 
as a greater mediolateral width and dorsoventral 
diameter, as well as longer and more horizontally 
oriented spinous processes (Gómez-Olivencia et 
al. 2013). These anatomical differences led sev-
eral authors to propose functional implications 
for the Neanderthal cervical spine: less lordosis 
and more stability, compared with H. sapiens 
(Gómez-Olivencia et al. 2013; Been et al. 2017). 
However, these hypotheses were based on clini-
cal studies performed on a modern human sam-
ple and no experimental data had been tested 
(Mayoux-Benhamou et al. 1994; Olson et al. 
2006; Alpayci et al. 2016; Been and Bailey 2019).

Focusing on the morpho-functionality of the 
cervical spine, Manfreda et al. (2006) and Nalley 
and Grider-Potter (2015, 2017) found various 
vertebral measurements related to posture or 
locomotor patterns in Primates, confirming the 
existence of a morpho-functional relation in the 
Order (Manfreda et al. 2006; Nalley and Grider-
Potter 2015, 2017). Even so, no motion data had 
been analyzed until more recently (Grider-Potter 
et al. 2020; Palancar et al. 2024; Taverne et al. 
2024). Measuring ranges of motion of several 
species of Primates and testing its relation with 

vertebral shape variables, Grider-Potter et al. 
(2020) found no association between vertebral 
shape and mobility. In contrast, Palancar et al. 
(2024) found a possible positive morpho-func-
tional relation in a modern human sample in 
both rotation and flexion-extension movements 
of the atlas vertebra. In the latter work, they 
also estimated the ranges of motion of several 
Neanderthal atlases, based on the human posi-
tive relation. Contrary to previous hypotheses on 
Neanderthal cervical spine mobility, they con-
cluded that no differences were observed between 
Neanderthals and modern humans ranges of 
motion of the atlas (Palancar et al. 2024). 

However, analyzing ranges of motion consid-
ers only the maximal capability but not the way 
it is actually acquired, which is the spatio-tempo-
ral trajectory pattern. It is possible that modern 
humans and Neanderthals may well have had 
similar flexion-extension range of motion but 
different spatio-temporal trajectory patterns. The 
aim of the present work was therefore to apply 
for the first time Procrustes Motion Analysis 
(PMA) methods in a paleoanthropological con-
text, to estimate the UCS motion behavior of 
La Ferrassie 1 and to assess possible differences 
between this Neanderthal and modern humans 
in terms of mobility.

Material and methods

Material
The modern human sample consists of seven 

unembalmed human specimens analyzed in pre-
vious works (Beyer et al. 2020; Palancar et al. 
2024), in which dissections involved removing 
the superficial soft tissues to access the upper cer-
vical spine and its associated anatomical struc-
tures such as ligaments, suboccipital muscles, 
and fascia. All these structures were kept intact, 
while the lower cervical segment (below the third 
cervical vertebra), mandible and anterior viscera 
of the neck were removed. Descriptions of speci-
men preparation and 3D model extractions can 
be found elsewhere (Dugailly et al. 2010, 2011, 
2013). The modern human individuals were aged 
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65 to 80 years and showed no cervical trauma or 
history of spine surgery. They exhibited arthrosis 
but showed no significant degenerative processes 
in the upper cervical spine; the most pronounced 
issues were found in the lower cervical spine, as 
detected by Tao et al. (2021). Individuals with 
fractures, exostosis, or anatomical variants were 
excluded. In the sample, lordosis of the UCS 
ranges between 27o (minimum) and 37.3o (maxi-
mum), with a mean of 31.3o.

The fossil sample consists of the skull, atlas 
and axis of La Ferrassie 1, a Neanderthal indi-
vidual found at the La Ferrassie site, located in 
Dordogne (France), and dated to 43-45 ka (Heim 
1976; Guérin et al. 2015; Gómez-Olivencia et 
al. 2018). These fossils show some damage that 
required reconstruction/estimation to be used in 
this study. In the case of the atlas, La Ferrassie 1 
lacks the left transverse process. As the transverse 
foramen is not analyzed here, only the landmark 
on the most lateral point of the transverse process 
had to be estimated, in this case by mirror imag-
ing. The axis does not preserve three landmarks: 
the tip of the dens and both transverse processes. 
Those were estimated by thin-plate-spline (TPS) 
interpolation using the function estimate miss-
ing from the geomorph package version 4.0.5 
(Adams and Otárola-Castillo 2013) in RStudio. 
Regarding the occipital base, only one landmark 
in the mastoid sulcus had to be estimated, by 
mirror imaging.

Kinematic data
Motion data of the skull, atlas and axis in 

both flexion-extension and axial rotation were 
obtained from previous work (Dugailly et al. 
2010; Beyer et al. 2020). Each anatomical prep-
aration was set on a custom-made jig with the 
skull oriented downward and fixed to a rigid 
plate. The Frankfurt plane of the head (the 
plane between the upper border of the external 
auditory meatus and the margo infraorbitalis) 
was aligned with the horizontal plane. Passive 
motions of cervical vertebrae were applied 
using two metallic pins rigidly screwed into C3 
(one vertical pin through C3 body, one pin in 
C3 transverse processes). The latter provided a 

fully free spatial displacement of C2 during the 
procedure by avoiding potential constraints at 
the pin–bone interface. During data collection, 
the vertebrae were moved by displacing the pin 
in two different planes of interest separately in 
several steps. Kinematics were analyzed from 
five sagittal discrete positions during two dif-
ferent motions: 

	- Flexion-extension: from neutral to interme-
diate and maximal flexion and extension.

	- Rotation: from neutral to intermediate and 
maximal right and left rotation. 

At each discrete position, spatial locations 
of the bones were recorded using a 3D-digitizer 
(FARO, B06/Rev 18), pointing technical mark-
ers previously added to the bones (Dugailly et 
al. 2010). The output of discrete joint displace-
ments was processed using a standard mathemat-
ical method for motion kinematic computation 
(Cappozzo et al. 1995). Details about the entire 
experimental set-up and validation protocol can 
be found elsewhere (Dugailly et al. 2010, 2011, 
2013; Beyer et al. 2020).

Motion analysis
Each anatomical preparation was scanned 

in neutral position using computed tomog-
raphy (Siemens SOMATOM, helical mode, 
reconstruction: slice thickness = 0.5 mm, inter-
slice spacing = 1.0 mm, image data format = 
DICOM). Segmentation and 3D model recon-
struction were performed using semi-automatic 
procedures on the software Amira version 5.4.0 
(Visage Imaging, Inc.) to obtain the surface of 
the bones and no viscera.

A total of 236 shape (semi)landmarks were 
placed on each individual following the digitiza-
tion template of high-density geometric morpho-
metrics of occipital base (Palancar 2023) (Fig. 
S1, Tab. S1), atlas (Palancar et al. 2020b)C1 (Fig. 
S2, Tab. S2) and axis (Palancar et al. 2021) (Fig. 
S2, Tab. S3). Then, in software lhpFusionbox 
(Chapman et al. 2013) kinematic data obtained 
on the experiment via the technical markers were 
applied to the shape (semi) landmarks to obtain 
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the upper cervical spine shape of the individual 
on each of the discrete positions.

Then, motion trajectories were obtained by 
applying the protocols detailed in Waldock et 
al. (2016). 

1)	Firstly, we performed a Procrustes registra-
tion without scaling (in order to control 
for scale during the third step) of the entire 
sample to translate and rotate each posture 
of each individual to a common centroid. 

2)	Secondly, we standardized the sample by 
shape extraction of the motion residuals: 
i.e., we subtracted the individual mean 
from each of the postures of the individual. 

3)	Thirdly, we standardized size: these motion 
residuals are scaled by the ratio of the centroid 
size of the individual mean to the sample 
mean. This way we scale the motion residuals 
proportionally to the entire sample size. 

4)	Finally, we performed a Principal Compo-
nent Analysis (PCA) on the scaled motion 
residuals that represents the trajectory of 
the motion itself. These analyses are per-
formed on each motion direction (flexion-
extension and rotation) separately.

Shape vs. motion
To test whether there is a relation between 

the shape of the UCS and the trajectories of the 
motion we performed different two-block Partial 
Least Squares analyses (2B-PLS) using function 
pls2B in RStudio v. 2023.03.0+386, package 
Morpho 2.5.1 (Schlager 2017), one for flexion-
extension and one for rotation. The p-value of 
the 2B-PLS is determined by permutation test-
ing (1000 permutations) (Schlager 2017). The 
shape of the UCS is considered as the individual 
mean of the five discrete positions measured in 
each motion, which we refer to as the mean posi-
tion. The motion trajectories are considered as the 
PC scores from the PCA that collectively explain 
more than 95% of variation (Fig. 1). 

La Ferrassie 1 estimation
Since the fossil bones of La Ferrassie 1 indi-

vidual were isolated, we first had to articulate 

them to obtain the mean position of the UCS of 
this Neanderthal. For that, we used the function 
rotonto in RStudio v. 2023.03.0+386, package 
Morpho 2.5.1 (Schlager 2017) to rotate and 
translate each bone separately to the modern 
human mean configuration. Once we obtained 
the mean position of La Ferrassie 1, we predicted 
through the PLS analysis, the motion trajectory 
of this Neanderthal: the PC scores. We did that 
by using the previous 2B-PLS, using the func-
tion predict PLS from Data (package Morpho 
2.5.1; Schlager 2017). The predicted motion tra-
jectory of La Ferrassie 1 is statistically compared 
with the modern humans by a permutation test 
using the permudist function (package Morpho 
2.5.1; Schlager 2017). To assess the reliability of 
the results, we performed a leave-one-out cross-
validation within the modern human sample 
(argument “cv” of the function pls2B). By using 
the shape predictor function in package geo-
morph 4.0.4 (Baken et al. 2021) we extracted the 
motion residuals and added them to the mean 
position of La Ferrassie 1 to see the five estimated 
discrete positions. Finally, to facilitate the visu-
alization and interpretation of the results, cubic-
spline interpolation of the landmarks trajectories 
were estimated using the function interp1 in 
MATLAB v. 9.7.0. (MATLAB 2018): several 
intermediate positions were estimated resulting 
in a total of 50 postures. These kinematic data 
were then fused with the 3D model using lhpFu-
sionbox software to further visualize the motion 
in 4D format.

Results

The PCAs performed on the motion residu-
als that represent the flexion-extension and rota-
tion motion trajectories are shown in Figure 1. 
In the flexion-extension motion (Fig. 1A), the 
first three PCs explained more than 95% of the 
variability and were significantly related via PLS 
with the mean position of the UCS (87% correla-
tion, p-value < 0.1). The result of the leave-one-
out validation can be found in Supplementary 
Online Material (Fig. S3). In the rotation motion 
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(Fig. 1B), the first five PCs explained more than 
95% of the variability but were not related sig-
nificantly via PLS with the mean position of the 
UCS (p-value = 0.261). 

The mean position of La Ferrassie 1, obtained 
from the rotation and translation of each isolated 
bone to the modern human mean position, is 
shown in Figure 2. Based on this mean position 
of La Ferrassie 1 - and the positive relation found 
for flexion-extension motion between mean posi-
tion and motion trajectory - we obtained the 
five estimated postures of this specimen during 
flexion-extension (Fig. 3). By interpolating inter-
mediate postures, we created a video of the flex-
ion-extension motion of the UCS of La Ferrassie 
1 (compared to a modern human) (electronic 
supplementary material, video SV). The permu-
tation test comparing the Neanderthal and the 
modern human mean was not statistically sig-
nificant (p-value = 0.9, PD = 8.65).

Although not statistically significant, Figure 
3 and the video indicate that, compared to mod-
ern humans, in maximal flexion, the skull of La 
Ferrassie 1 points more inferiorly and, in maximal 
extension, more superiorly. The plot of the video 
indicates the length variation between the Inion 
and the spinous process of C2 during motion. It is 
seen that, although similar and almost parallel, the 
curves differ slightly and show that the increase in 
length is greater in La Ferrassie 1. Table S4 shows 
the distance between Inion and C2 spinous process 
during time of both La Ferrassie 1 and the mod-
ern human mean. As shown in Table S4, although 
there is also more extension, it is during the flexion 
where La Ferrassie 1 exhibits the greatest motion. 

Additionally, in maximal extension (Figure 3A), 
the spinous processes of La Ferrassie 1 do not serve 
as a physical limit to the motion as they are not yet 
in contact. However, in the modern humans mean, 
the atlas and axis processes touch each other in this 
position, thereby limiting this motion. 

Discussion

Motion analysis is a key element linking 
anatomy, biomechanics, and a wide range of 

behaviors that can be statistically interpreted in 
wider paleoecological frameworks. Consequently, 
any methodological development in this domain 
is of potential importance in paleobiology. Here, 
we developed virtual methods to apply specific 
aspects of arthrokinematics within the frame-
work of geometric morphometrics. For the first 
time, PMA has been applied in a paleoanthro-
pological context. Thanks to this method, it was 
possible to establish relevant predictions not only 
about its range of motion but also about how La 
Ferrassie 1 Neanderthal would have flexed and 
extended the UCS. Our findings highlight the 
potential of integrating motion capture with 
geometric morphometrics techniques to inves-
tigate functional anatomical problems and pat-
terns of movement in human evolution. 

Neanderthal cervical mobility
The first comprehensive analysis of the 

Neanderthal cervical vertebrae was carried out 
by Gómez-Olivencia et al. (2013). In that study, 
the authors suggested that certain morphologi-
cal features—specifically the longer spinous 
processes in the mid-cervical region (particu-
larly C5–C6)—could have made neck extension 
more difficult in Neanderthals.  They proposed 
that achieving a range of motion comparable to 
that of modern humans might have required 
a less lordotic cervical spine. However, more 
recently, Palancar et al. (2025) have reinter-
preted the Neanderthal cervical spine as exhibit-
ing similar —or even greater— cervical lordosis 
compared to modern humans. Even so, Gómez-
Olivencia et al. (2013) also noted that the more 
horizontal orientation of the spinous processes 
may have acted as a compensatory mechanism, 
potentially allowing for greater extension of 
the cervical spine. On the other hand, Been 
and Bailey (2019) more explicitly hypothesized 
reduced cervical mobility in Neanderthals, based 
on a combination of morphological features and 
clinical extrapolations. More recently and basing 
the interpretation on experimental data obtained 
in modern humans, Palancar et al. (2024) sug-
gested that the Neanderthal atlas (C1) would 
have similar ranges of motion to H. sapiens 
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Fig. 1 - Principal Component Analysis plots of the scaled motion residuals. The curved line draws 
the mean motion trajectory in flexion-extension (A) and rotation (B). Convex hulls group all the 
individuals in each of the five discrete positions. 
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in both axial rotation and flexion-extension. 
Here, by increasing the study area to the entire 
UCS, we obtained a predicted flexion-extension 
motion for the Neanderthal of La Ferrassie 1 
that could be similar to that of modern humans. 
Both Palancar et al. (2024) and the present work 
suggest that the question of Neanderthal neck 
mobility should be revisited. Moreover, cervi-
cal spine mobility and its musculo-skeletal con-
figuration are not only related to neck flexion-
extension or basic movements, but also to upper 
limb mobility and the stabilization of the head 
during walking and running. For example, the 
great apes possess an atlanto-clavicularis mus-
cle, which is attached to the transverse processes 
of atlas and the clavicle, and acts during elbow 
extension in quadrupedal locomotion (Aiello 
and Dean 1990). Regarding the stabilization of 
the head, recently Yegian et al. (2021) proposed 
that the evolution of long-distance running may 
have favored the reduction of the rotational 
inertia of the head, changing its configuration 
and size (Yegian et al. 2021). Differences in the 
stabilization of the head can also be noticed in 
the presence of the nuchal ligament: among 
great apes, only hominins possess this ligament, 
which has evolved independently in other mam-
mals adapted for running like dogs and horses 
(Bianchi 1989). 

Hominin kinematics and locomotion
Another important aspect of Neanderthal 

anatomy related to neck and body kinematics is 
the semicircular canal system. Spoor et al. (2003) 
suggested that the relatively small vertical canals 
in Neanderthals implied reduced agility and 
a locomotor repertoire characterized more by 
endurance walking than by running.  However, 
subsequent studies have offered alternative per-
spectives. Evidence from calcaneus anatomy and 
biomechanics (Raichlen et al. 2011), as well as 
paleoecological data (Stewart et al. 2019), sup-
ports more dynamic locomotor capacities in 
Neanderthals, possibly including sprinting and 
ambush hunting. Furthermore, Bastir et al. (2020) 
identified morphological similarities in thorax 
structure between Homo erectus (Nariokotome) 
and Neanderthals (Kebara 2), suggesting that the 
narrow, flat ribcage of modern humans may be a 
more recent evolutionary development, thereby 
questioning earlier assumptions about locomo-
tor differences within the genus Homo. While 
the functional implications of vestibular anat-
omy remain debated, our findings indicate that 
Neanderthal cervical mobility was not necessarily 
reduced, inviting a more cautious interpretation 
of behavioral inferences based solely on semicir-
cular canal morphology.

The current study demonstrates that by com-
bining virtual morphology, geometric morpho-
metrics and experimental data, based on actual 
anatomical morpho-functional relations, new 
insights can be gained that can help test hypoth-
eses previously grounded in theoretical recon-
structions (Spoor et al. 2003; Gómez-Olivencia 
et al. 2013; Been et al. 2017; Been and Bailey 
2019). Consequently, it seems that more exhaus-
tive analyses point to a functionality that con-
trasts with the hypothesized, less mobile cervical 
vertebrae of this species.  

Study limitations
As the PLS analysis relates the motion trajec-

tory to the UCS mean posture, the latter shape 
variable is crucial. In this study, the mean pos-
ture of La Ferrassie 1 UCS is based on the mod-
ern human sample. The choice may introduce 

Fig. 2 - Mean position of La Ferrassie 1 individ-
ual, obtained as the result of the translation and 
rotation of each isolated bone to the mean posi-
tion of the modern human sample. 
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Fig. 3 - Estimated positions during flexion-extension motion of La Ferrassie 1 (left) and the modern 
human mean for comparison (right). A: maximal extension; B: intermediate extension; C: neutral 
position; D: intermediate flexion; E: maximal flexion.
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bias, as Neanderthal cervical lordosis could dif-
fer from that of modern humans. Indeed, Been 
et al. (2017) proposed a less lordotic cervical 
spine in Neanderthals, whereas Palancar et al. 
(2025) suggested the opposite, and Haeusler 
et al. (2019) found no substantial difference in 
the La Chapelle-aux-Saints individual. A differ-
ent cervical lordosis would result in a different 
UCS mean posture and could therefore alter the 
motion trajectory. However, current evidence is 
contradictory—particularly for the UCS—since 
the possible reduced cervical lordosis proposed 
for Neanderthals is based on the length of the 
spinous processes at C5 and C6, which are less 
relevant for UCS curvature. For this reason, 
and until more precise reconstructions are avail-
able, we have adopted the most conservative and 
parsimonious approach: extrapolating the UCS 
mean posture from modern human data. We 
acknowledge that future studies testing alterna-
tive configurations of cervical curvature will be 
valuable to assess the sensitivity of our results to 
this assumption.

Additionally, this study has only assessed 
motion differences in one region of the neck 
of one fossil, considering only bone-to-bone 
interactions. Future steps in the analysis of 
Neanderthal neck kinematics should include the 
entire cervical spine and musculoskeletal mod-
eling to understand not only the motion of the 
bones but the implication of ligaments and mus-
cle actions within the context of locomotion. 

The age of the sample could be seen as a 
significant limitation since the modern human 
subjects ranged between 65 and 80 years old 
and exhibited some minor arthrosis. However, 
this is in fact beneficial for our study because 
the fossil we are analyzing, La Ferrassie 1, is 
also an older individual with several pathologi-
cal lesions and osteoarthritis (Gómez-Olivencia 
et al. 2018). At the UCS, La Ferrassie 1 has an 
anatomical variant of the atlas (unilateral persis-
tent first intersegmental artery) and significant 
osseous remodeling in the left half of the axis 
(Gómez-Olivencia et al. 2018). Therefore, an 
older comparative sample is more suitable for 
our purposes. 

It is important to consider how age-related 
changes and degenerative conditions can affect 
the results. Osteoarthritis, even if mild, can 
affect joint mobility and biomechanics, which 
could alter direct comparisons with La Ferrassie 
1. Previous studies have shown that osteoarthritis 
can reduce the range of motion and alter joint 
loading patterns (Thorp et al. 2006; Clynes et 
al. 2019). Additionally, advanced age is associ-
ated with a decrease in muscle mass and strength, 
which can also influence movement biomechan-
ics (Keller and Engelhardt 2013).

To address these concerns, it would be ben-
eficial to include a control group consisting of 
younger, healthier individuals in future stud-
ies. This would allow for the assessment of the 
impact of age and degenerative conditions on the 
results and provide a more comprehensive com-
parison. Including a more diverse control group 
could help distinguish kinematic differences 
specific to advanced age and osteoarthritis from 
those inherent to the pathological condition of 
La Ferrassie 1.

In summary, while the selection of the mod-
ern sample was justified by the need to compare 
with the pathological condition of La Ferrassie 1, 
we recognize the importance of considering how 
age-related changes and degenerative conditions 
can influence the results. Including a younger 
and healthier control group in future studies 
would provide a more comprehensive and accu-
rate assessment of kinematic variability.

Obtaining younger cadaveric samples for 
studies is inherently challenging due to several 
factors. Firstly, younger individuals are less likely 
to be available for donation, as the majority of 
cadaveric donations come from older individuals 
who have passed away due to natural causes or 
age-related conditions. This demographic trend 
results in a higher prevalence of elderly cadav-
eric samples, which often exhibit age-related 
characteristics and degenerative conditions. 
Additionally, ethical considerations and consent 
processes for cadaveric donations further limit 
the availability of younger samples. Families 
may be more reluctant to consent to the dona-
tion of younger individuals, especially in cases of 
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unexpected or traumatic deaths. Consequently, 
researchers frequently rely on older cadaveric 
samples, which, while beneficial for certain 
comparative studies, may not fully represent 
the kinematic variability observed in younger 
populations. This limitation underscores the 
importance of considering age-related changes 
and degenerative conditions in the analysis and 
highlights the need for alternative approaches to 
obtain a more diverse sample in future studies.

We chose La Ferrassie 1 as the case study 
because it is, to the best of our knowledge, the 
only Neanderthal fossil that preserves the skull 
base, atlas, and axis almost completely. In the 
future, if more fossil individuals are recovered pre-
serving these bones, they should also be analyzed 
to expand the Neanderthal comparative sample.

It is important to note that the internal vali-
dation test (leave-one-out procedure within the 
modern human sample) showed limited accu-
racy in reconstructing the motion trajectories of 
excluded individuals. This outcome highlights the 
sensitivity of the method to inter-individual vari-
ation and underscores the extent of uncertainty 
that accompanies predictive reconstructions, par-
ticularly when applied to morphologies that devi-
ate substantially from the modern human range. 
However, the primary aim of this study is not to 
provide definitive statements about Neanderthal 
cervical spine mobility, but rather to illustrate the 
potential of Procrustes Motion Analysis combined 
with predictive modeling as a tool for addressing 
questions of functional morphology in the fossil 
record. In this sense, the limitations observed in 
the validation test are informative: they delineate 
the current scope of the approach, while at the 
same time pointing toward avenues for refine-
ment, such as enlarging comparative samples or 
incorporating alternative modeling strategies.

Finally, sample size is a crucial limitation. 
However, working with human cadaveric samples 
is chronically affected by such difficulties because 
the availability of human bodies for experimen-
tal analysis is not stable and, when available, the 
number of cadavers is usually small. In fact, simi-
lar cadaver samples used in similar analyses are 
fewer than 10 (Dugailly et al. 2010; Palancar et 

al. 2024; Taverne et al. 2024). Even so, since “the” 
main objective of this work is rather to test the 
capacity of PMA to detect variations in the types 
of movement within hominins than to under-
stand the details of Neanderthal neck mobility, 
we believe that the sample size is sufficient. 
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