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Summary - Geography is a well-known factor shaping genetic variation in human populations. However, 
the potential role played by cultural variables remains much understudied. This study investigates the impact 
of socio-cultural variables on genomic similarity and the saliva microbiome, using data from populations 
in Lesotho and Namibia. Geographic distance within Lesotho increases genetic differentiation, while shared 
clan affiliation surprisingly increases it. In Namibia, ethnicity is the predominant factor influencing genetic 
affinity. Saliva metagenomic data shows a negative correlation between age and alpha diversity, with notable 
differences in host-interacting taxa and viral load. These findings highlight the role of geography in shaping 
genetic affinity even at small scales and the complex influences of cultural factors. The saliva microbiome 
appears primarily affected by unrecorded individual behaviors rather than geographic or cultural variables. 
At population-level these oral microbiomes reveal insights into some dietary habits, oral health, and also the 
communal viral load, which appears to have greater incidence in Lesotho possibly related to the long-term 
effects of the HIV epidemic in the country.
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Introduction

Patterns of human genetic and metagenomic 
variation are influenced by geography (Handley 
et al. 2007; Ruan et al. 2022). At global scale, 
physical distance tends to be the main contrib-
uting factor in shaping differentiation (Prugnole 
et al. 2005; Ramachandran et al. 2005; Li et 
al. 2008; Novembre et al. 2008; Tishkoff et al. 
2009; de Filippo et al. 2012; González-Santos 
et al. 2022). Geographic patterns have also been 
observed at smaller scales (Leslie et al. 2015; 
Skoglund et al. 2016; Lipson et al. 2018; Bycroft 
et al. 2019; Raveane et al. 2019; Ioannidis et al. 
2021; Willerslev and Meltzer 2021). At these 
small scales, there are instances of culturally 

defined dynamics that contribute to the dis-
tribution of genetic variation by regulating the 
pattern of gene flow across neighbouring com-
munities (Oota et al. 2001; Wilder et al. 2004; 
Langergraber et al. 2007; Marks et al. 2012).

Human populations in Southern Africa are 
a paradigmatic crossroads of exceptional genetic 
diversity but what socio-cultural dynamics drive 
patterns of genetic affinity beyond geography 
has nor beet investigated thoroughly (1KGPC 
2015; Choudhury et al. 2020; Oliveira et al. 
2023). Modern African countries like Namibia, 
Botswana, South Africa and Lesotho are home 
to indigenous populations (Ellenberger 1912; 
Hann et al. 1966) that belong to diverse lifestyle 
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traditions and ethnolinguistic groups such as the 
Bantu-speakers (Van Warmelo 1962; Retshabile 
et al. 2018; Sengupta et al. 2021) and Khoisan-
speakers (Barnard 1992; Schuster et al. 2010; 
Uren et al. 2016; Gronau et al. 2011; Veeramah 
et al. 2012). Although outside influences have 
impacted these societies, some populations in 
these regions maintain a degree of traditional 
ways of life (Barnard 1992; Tishkoff et al. 2007; 
Schlebusch 2010; Henn et al. 2011; Oliveira et 
al. 2023). In varying degrees, some were nomadic 
hunter-gatherers and pastoralists, others set-
tled agriculturalists; each one with a potentially 
diverse set of oral and gut microbiomes (Leeming 
et al. 2019; Singh et al. 2017; De Angelis et al. 
2020; Oduaran et al. 2020).

Lesotho comprises more than 2 million peo-
ple, the Basotho, who speak Sesotho, a southern 
Bantu language (Huffman 2007; Hammond-
Tooke 2004). This ethnic group has at least 
twice as many members in neighbouring South 
Africa and other countries. The roots of the 
Sotho people in Southern Africa trace back to 
Bantu-speaking migrants from the north (Van 
Warmelo 1962; Sengupta et al. 2021) who 
established themselves there in the first centu-
ries of the Common Era as part of the “Bantu 
expansion” (Tishkoff et al. 2009, 2012; Pickrell 
et al. 2012; Veeramah et al. 2012; Marks et 
al. 2014; Marks et al. 2015; Gonzalez-Santos 
et al. 2015; Skoglund et al. 2017; Gonzalez-
Santos et al. 2022). Historically the Basotho 
nation conformed itself as an amalgamation 
of Bantu-speaking clans of various Sotho ori-
gins and some other nations, Bantu-speaking 
or not (Eldredge 1993; Montinaro et al. 2016; 
Montinaro et al. 2017). What is more, the 
consolidation of Lesotho as a country in the 
19th century was the result of the diplomatic 
and military efforts of king Moshoeshoe I that 
integrated diverse peoples into his own Sotho 
clans. Although patrilineal inheritance of clan 
affiliation remains as a system (Montinaro et al. 
2016), the importance and power traditionally 
placed in the hands of chiefs of clans decayed 
with the birth of the country of Lesotho 
(Eldredge 1993).

Namibia represents the other side of the 
spectrum, a large and sparsely populated 
multi-ethnic country hosting both Bantu and 
Khoisan-speaking peoples (Petersen et al. 2013; 
Montinaro et al. 2017; Oliveira et al. 2023), 
where ethnic groups are largely structured by ter-
ritory (Barnard 1992; Malan 1995).

The Bantu-speaking Ovambo are the largest 
ethnic group in Namibia and account for half of 
the population but are concentrated in a small 
region in the north-central lands. They consist of 
various culturally related peoples that also inhabit 
southern Angola (Davies 1994). Their tradi-
tional lifestyle is based on farming and raising 
cattle. The Himba and Herero are closely related 
(Oliveira et al. 2018) Bantu-speaking groups 
which represent 7% of Namibia’s population. 
Their arrival to Namibian territory is attested in 
the 17th century. Once in Namibia they split and 
those that remained in the Northeast became the 
Himba, while those that ventured into the hin-
terland to settle became the Herero. 

Namibia is also home to other non-Bantu-
speaking groups such as the Damara (Barnard 
1992) who speak Khoekhoe languages (Barbieri et 
al. 2014; Montinaro et al. 2017). The Damara are 
among the earliest known inhabitants of Namibia 
together with Khoe and San groups and make up 
around 8% of the population. However, despite 
speaking Khoekhoe, the Damara are geneti-
cally closer to other Bantu-speakers and may be 
descended from a population related to the Himba 
(Oliveira et al. 2018; Vicente et al. 2019). 

The groups listed above will be the focus 
of this manuscript but Namibia alone harbours 
other minorities, and southern Africa as whole 
harbours many more ethnicities and languages 
(Oliveira et al. 2023). 

Many ethnic groups inhabiting southern 
Africa today share ties in the form of ancient or 
ongoing admixture, shaping their genetic ances-
try in one direction or another (Choudhury et al. 
2021). Such events have been studied in recent 
years (Henn et al. 2011; Montinaro et al., 2017; 
Choudhury et al. 2021; Sengupta et al. 2021; 
Oliveira et al. 2023) improving our understand-
ing of the complexity of African diversity. The 
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main groups (Bantu, San and Khoekhoe) have 
been shown to be highly divergent as the result 
of physical barriers and distances that enabled 
through time the emergence of genetic structure.

Other factors can explain population struc-
ture in the absence of physical barriers. These 
include assortative mating, philopatry, lifestyles, 
subsistence strategies and other cultural norms 
(Li et al. 2008; Marks et al. 2012; Robinson et 
al. 2017; Norries et al. 2019). These non-geo-
graphical factors are far more complex to investi-
gate in human groups and the effects are so small 
that can only be detected at a micro-evolutionary 
scale. In fact, there is little empirical evidence on 
how much and for how long behaviours such 
as philopatry need to act on gene flow within 
populations in order to lead to the dissolution 
of the panmictic state of a sympatric popula-
tion (Langergraber et al. 2007; Oota et al. 2001; 
Wilder et al. 2004). 

How the interaction between cultural and 
geographical factors shapes human microbiomes 
is also difficult to investigate (Ruan et al. 2022). 
This is in part due to development of post-
industrial societies and globalisation. These phe-
nomena have transformed the traditional modus 
vivendi and social dynamics leading to greater 
levels of homogenization in many countries of 
the world. Globalisation has also impacted oral 
and gut microbiomes by imposing changes in 
traditional lifestyle and diet (Yatsunenko et al. 
2012; Lasalle et al. 2018; Oduaran et al. 2020). 

What factors exactly govern the microbial 
composition of the mouth and gut are still not 
perfectly understood, in particular the role of the 
host genome. The salivary microbiome in par-
ticular appears variable in measurements within 
the same individuals made at different points in 
time but it is still even more variable between dif-
ferent individuals (Armstrong et al. 2021). The 
core of the salivary microbiota therefore is both 
somewhat stable at the individual level (Gajer et 
al. 2012; Romero et al. 2014) and highly vari-
able at population level with minimal popula-
tion differentiation (Ruan et al. 2022). These 
differences have been reported to be driven by 
individuals’ host behaviour. Geography has 

also been reported to correlate somewhat with 
small differences in salivary microbiomes (Ruan 
et al. 2022). However, other more tangible fac-
tors such as age, cohabitation, diet, tobacco 
and alcohol consumption can also play relevant 
roles (Yatsunenko et al. 2012; Shaw et al. 2017; 
Lasalle et al. 2018; Ruan et al. 2022). 

To address some of these open ques-
tions, we report here new data in the form of 
imputed genomes and associated saliva micro-
biomes from 249 individuals from Lesotho 
and Namibia (Marks et al. 2012; Montinaro 
et al. 2016; Montinaro et al. 2017; Gonzalez-
Santos et al. 2022). Along with the collection 
of the genetic material, metadata about each 
individual and their immediate ancestors was 
recorded in the form of variables such as ethnic-
ity, birth location, clan affiliation and age. By 
combining the metadata with the genomic and 
metagenomic information we investigated the 
contribution these variables have on shaping 
local diversity, within and between individuals 
and groups.

Materials and Methods

Samples
Saliva samples from male individuals from 

Lesotho and Namibia (Fig. 1A) were collected 
between 2009 and 2010 with written consent 
from participants and approval by local eth-
ics boards (Namibian Ministry of Health and 
Social Services, the Ministry of Health and 
Social Welfare of Lesotho and Oxford Tropical 
Research Ethics Committee (OxTREC)) (Marks 
et al. 2012; Marks et al. 2015; Montinaro et al. 
2016; Montinaro et al. 2017; Gonzalez-Santos 
et al. 2022). The DNA used for sequencing had 
been previously extracted from saliva for previ-
ous works (Marks et al. 2012; Marks et al. 2015; 
Montinaro et al. 2016; Montinaro et al. 2017; 
Gonzalez-Santos et al. 2022). 

The totality of the participants in Lesotho 
(n=103) identified as Basotho (SOT), a south-
ern Sotho Bantu-speaking ethnic group. The 
sampling strategy in Lesotho was designed to 
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maximise spatial variation between Highland 
and Lowland ecozones. Three locations in the 
Lowlands (TB, MOR, ROM) and three loca-
tions in the Highlands (MEL, SEH, SLB) 
were visited for sample collection (see Fig. 
1A). During the process of saliva collection, 
non-genetic, individual-level personal meta-
data about the participant was collected. The 
variables recorded, with varying degrees of 
missingness, were the following: ethnic group 
(“Ethnicity”, variable only for Namibia), year of 
birth (“YoB”), place of birth (“Birth”), village of 
residence (“Village”), ecozone region (“Region”, 
considered only for Lesotho) and clan affilia-
tion (“Clan”). Furthermore, information about 
the birthplaces, clan and ethnicity of parents 
and grandparents of each participant were also 
recorded if known (Fig. 1B). 

The participants from Namibia (n=146) self-
identified as a member of four different groups: 
Himba (HIM), Herero (HER), Ovambo (OWA) 
and Damara (DAM) (Fig. 1A). Other ethnic 
groups are present in Namibia but we focused on 
these Bantu-speaking (HIM, HER, OWA) and 
KoeSan speaking (DAM) groups.

 In South African societies, particularly 
among the Basotho, clans hold significant cul-
tural and social importance. Theoretically, a 
clan is a group that traces descent from a com-
mon ancestor, often patrilineally, and can shape 
roles in identity, kinship, and social hierarchy. 
Clans can also be associated with totems, in the 
form of animals, plants, or natural elements. 
These totems may influence cultural practices, 
such as restrictions on eating or harming the 
totem animal. Clans often also have surnames 
strongly associated with them.

In Lesotho, two clans make up for more than 
half of the dataset (60% among participants, 
57% at the parent and grandparent level). We 
labelled these as “large” clans. The remaining 
11 clans were considered “small” (between 1-10 
members among participants)

Information on clan affiliation in Namibia 
was either missing or virtually non-variable within 
groups, and therefore it was not further investigated. 
Similarly, Region and Ethnicity are overlapping in 

Namibia. We kept Ethnicity only as a more explicit 
descriptor of inter individual variation. 

Sequencing and data analysis and validation
The genomic DNA samples extracted from 

the saliva of each individual were sequenced by 
Gencove to average depths of coverage below 1X, 
otherwise known as low-pass sequencing (Li et 
al. 2021; Martin et al. 2021), and then imputed 
as described in Li et al. 2021 using the 1000 
Genomes Phase 3 haplotype reference panel. The 
resulting VCF files contain 37 million Single 
Nucleotide Polymorphisms (SNPs) of both true 
calls and imputed positions. We later filtered 
down the 37 millions to a set of 250k SNPs that 
we used for all later downstream analyses. This 
subset of markers was the result of the overlap 
between the imputed genotypes and Illumina 
genotyping chips (Infinium® Omni5-4 v1.2 
BeadChip and Human610-Quad v1.0) that we 
leveraged for validating the imputation accuracy.

A subset of 23 imputed individuals included in 
the low-pass sequencing, had been previously geno-
typed with the platforms referred above and their 
genetic data was available (Montinaro et al. 2016, 
2017). We used this subset of 23 individuals for 
direct and independent evaluation of the quality of 
the genotypes imputed (Li et al. 2021; Martin et al. 
2021). We measured the quality of the imputation 
by checking SNP-by-SNP mismatch rate between 
the same individual (imputed vs genotyped) (SI 
Fig. 1). We achieved a mean imputation accuracy 
of 99.85% on this 250k subset of SNPs (247874 
variants) (SI Tab. 1). We also confirmed these 
duplicates as homozygous twins. Despite the high 
accuracy achieved we acknowledge there might be 
limitations outside this subset of markers for diverse 
African groups following this imputation approach 
(eg. choice of reference panel).

Metagenomic classification of the non-
human mapped reads of each individual sample 
was made using Kraken 2 and RefSeq database 
(including archaea, bacteria, eukarya and viruses 
reference sequences). This metagenomic data 
contained information about the relative abun-
dance of bacteria and viruses up to the species 
level (Wood et al. 2019). 
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Population genetics tools
We used PLINK (v2.00a3) (Chang et al. 

2015) to convert the individual VCFs containing 
37 million variants into PED format and kept a 
subset of ~250k SNPs that overlap with Illumina 
Omni5. Once in PED format, we merged all 
individuals into one single file for downstream 
analyses. We used the PLINK --pca option 
to perform Principal Component Analysis 
(PCA) on the dataset. We also used the PLINK 
--homozyg function with default parameters to 
identify Runs of Homozygosity (RoH) in each 
individual genome. PLINK with default param-
eters was also used to obtain individual heterozy-
gosity. We used ADMIXTURE (Alexander et al. 
2009) with partitions from k=2 to k=5.

Relatedness measurement tools
We estimated pairwise kinship coefficients 

within and between ethnic groups in the dataset 
using KING-Robust algorithm (Manichaikul et 
al. 2010) in KING software (v2.2.7) using the 
--kinship option. The kinship coefficient estima-
tion was calculated using only SNPs available for 
each given pair of individuals (SI Fig. 2). Positive 
values are predictive of the degree of relatedness 
between individuals. Coefficient values >0.354 
indicate duplicates, values between 0.354-0.177 
indicate first degree relationship, between 0.177-
0.0884 indicate second degree and between 
0.088-0.044 third degree. Values for unrelated 
pairs are typically around zero. Negative values 
of the kinship coefficient suggest substantial dif-
ferentiation between the two individuals. 

Following the geometric framework described 
in Oteo-Garcia and Oteo 2021, we used the L2 
norm to measure the genomic distances between 
pairs of individuals, which estimates the Euclidean 
distance between individuals projected in a multi-
dimensional space defined by the allele frequen-
cies or genotypes (n) of the 250k SNPs used in 
the dataset. Given two points in a given n-dimen-
sional space the Euclidean distance between them 
is given by √(X1-Y1)² + (X2-Y2}² + ... + (Xn-Yn)². 
The unit for L2 distances is the same unit as the 
original elements that are being compared. In this 
case, we used multiple loci which have no units 

and therefore L2 distances presented here are not 
accompanied by a defining unit of measure, just a 
numeric value (Oteo-Garcia and Oteo 2021). L2 
is correlated with both the proportion of markers 
with zero identical-by-state SNPs and KING kin-
ship coefficients (SI Fig. 3). For kinship analysis, 
L2 values correspond to KING kinship coeffi-
cients as follows: L2 <330 indicates first degree, L2 
>330 is second degree, L2 >360 is third degree. L2 
between 375-385 indicates no close or discernable 
kinship but may be indicative or inbreeding. L2 
>385 indicates clear unrelatedness. Related pairs 
of individuals up to the 3rd degree were removed 
from downstream analyses (SI Fig. 2). 

Metagenomic diversity measurements
We calculated saliva metagenomic alpha 

diversity for each individual at phylum level. 
We also calculated alpha diversity at species level 
using a subset of potentially pathogenic bacteria 
species extracted from a table originally presented 
in Warinner et al. 2014 (Lewy et al. 2019). We 
chose Shannon diversity index (H’) for the alpha 
diversity following the standard formula (H’ = 
-∑pi ln pi), where pi is the relative abundance of 
each taxon within each individual.

Conversion of raw metadata into binary 
independent variables

We summarised and translated the metadata 
associated with each individual into binary vari-
ables suitable for linear regression models. We 
started by recording if birthplace locations coin-
cided (“Birth” variable) between two individuals 
and turned that information into a binary inde-
pendent variable (Yes vs No). We recorded the same 
for the “Clan”, “Village”, “Region” and “Ethnicity” 
variables. At the “Parent” and “Grandparent” level 
of metadata comparisons between pairs of partici-
pants, the presence of matches in relation to place 
of birth was summarised as either being present or 
not, independently of the number of matches. For 
example, for “Grandparents” we could find eight 
matches for the birthplace, zero or any interme-
diate combination. This created many categories 
but it was rare finding more than 2 matches so we 
summarised it as a binary. 
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Regression and calculation of beta coefficients
To compute the linear regression models and 

other statistical tests, we used the R function lm from 
The R Stats Package (version 3.6.2). The following 
independent binary (Yes=1 , No=0) variables were 
tested considering a genomic true distance between 
two individuals (L2) as the dependent variable. To 
provide an indication of the degree of association 
between variables, Phi coefficients between each 
pair of binary variables were calculated with the 
sjt.xtab function from the sjPlot package in R. The 
values of the phi coefficient can range from -1 to 1 
and indicate the degree of association between the 
binary variables created here. The closer to zero the 
coefficient is, the more independent the two vari-
ables are between them (SI Tab. 3).

The following independent variables were 
tested when individual heterozygosity and saliva 
alpha diversity were tested as the dependent 
variables: age at the time of collection (based on 
“YoB”), “clan consistency” (defined as the frac-
tion of immediate ancestors (parents and grand-
parents) who are reported to belong to the same 
self reported clan of the individual), sampling 
area, region, clan, and shared birthplaces in par-
ents and grandparents. 

To correlate genomic distance with geo-
graphical distance (geodesic units to correct for 
Earth’s curvature) we used the distance between 
birthplaces of all individuals with available coor-
dinates. However, this was only possible for 
the 103 individuals from Lesotho but none for 
Namibia. The Procrustes analysis comparing 
geographic and genetic distances was made in 
R using the Vegan package (version 2.6-4) with 
default parameters and iterating (n=10000).

Results

Insights from genomic profiles 
We visualised the data collected from the 

individuals in Lesotho and Namibia (Fig. 1A-B) 
in its genomic and metagenomic form for ini-
tial exploration of the variation present in the 
dataset using PCA (Fig. 1C-D, SI Figure 4), 
ADMIXTURE (SI Fig. 5) and RoH (SI Fig. 6). 

The degree of inter and intra population 
variation in the genomic PCA shows different 
trends in Lesotho and Namibia (Fig. 1B). The 
PCA indicates a high degree of genomic homo-
geneity among the Basotho people of Lesotho. 
Except for one outlier, no differences were pre-
sent between Highland and Lowland regions. 
Genomic distances in Lesotho are not impacted 
by Khoe-San introgression (SI Fig. 7; Gonzalez-
Santos et al. 2022).

In Namibia on the other hand, we observe 
population structure over three clusters. One 
cluster consists of the highly homogeneous 
Ovambo with only one outlier. The other clus-
ter comprises Himba and Herero individuals, 
with some indication of admixture between the 
Ovambo and the Himba (Fig. 1C). There are 
two inbred Himba outliers (SI Fig. 6) on the top 
left corner of PCA (Fig. 1C). The third cluster is 
formed by the Damara, with some samples scat-
tered as outliers (Fig. 1B) due to higher levels of 
Khoe-San-related ancestry (SI Fig. 4). 

In contrast to Figure 1C, the PCA is based 
on phyla composition (Fig. 1D) shows complete 
overlap between ethnic groups. Structure appears 
to be mostly driven by the relative quantity of 
three phyla present in the saliva (SI Fig. 11). 
The relative quantity of Bacteroidetes in the 
saliva of each individual contributes to much 
of the variation along PC1, explaining 60% of 
total variation. The ratio between Firmicutes and 
Proteobacteria explains another 25% along the 
PC2 axis (Fig. 1D). Note that saliva samples were 
collected at different times during the day with-
out recording further details on diet, drinking or 
smoking habits, known to affect bacteria diver-
sity (Fan et al. 2018; Liao et al. 2022; Wirth et 
al. 2020; Al-Zyoud et al. 2020; Belstrøm 2020). 

ADMIXTURE results indicate that K=2 
is the best clustering in this dataset (SI Fig. 5). 
This partition separates the Namibian Bantu-
speakers together with the Khoisan-speaking 
Damara from the Bantu-speakers from Basotho. 
This likely reflects an ancestral split between 
these two groups of Bantu-speaking populations 
(Choudhury et al. 2021) with the Damara being 
ultimately derived from an ancestral population 
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related to the Himba (Oliveira et al. 2018). 
These individual ADMIXTURE profiles based 
on imputed data (SI Fig. 1) were compared with 
ADMIXTURE results of a subset of individu-
als for which SNP array data was available. We 
observed the same results using the imputed and 
genotyped data (SI Fig. 1). 

Inter Individual genetic distances as a function of 
cultural and geographical variables

In order to explore how geography and 
culture influence inter-individual and intra-
individual variation we estimated pairwise L2 

genomic distances and individual heterozy-
gosity for 103 and 146 individuals in Lesotho 
and Namibia respectively (Fig. 2A-B). The dis-
tribution of within-group variance of L2 inter-
individual distances varied across populations 
but had similar means (SI Tab. 4). Only the 
Basotho and Ovambo had somewhat normal 
distributions confirming solid genomic homo-
geneity (Fig. 2A). The stretched L2 distribu-
tions in other groups indicate recent or ongoing 
admixture processes. Figure 2B suggests that the 
different distributions of L2 measurements are 
not totally conditional to the heterozygosity of 

Fig. 1 - A) Map with the populations sampled in Namibia (in red); Himba (HIM), Ovambo (OWA), 
Herero (HER), Damara (DAM), and sampling locations in the Lowlands (MOR, ROM, TB) and Highlands 
(SEH, SLB, MEL) of Lesotho (in green). B) Summary of metadata, genomic and metagenomic infor-
mation collected (left) and processing of the genomic and metagenomic data and metadata for 
analyses (right). Made with Biorender. C) Principal component analysis coloured by population. D) 
Principal component analysis based on the composition of the main phyla. Arrows point towards the 
biplot direction of Bacteroidetes along the PC1 axis and Firmicutes-Proteobacteria along PC2 axis.  
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each population. The heterozygosity of Bantu-
speaking groups is similar across ethnicities (Fig. 
2B). It is highest among the Basotho and lowest 
among the Himba. Damara have higher values 
for individual heterozygosity (Fig. 2B), likely 
linked with the higher levels of non-Bantu ances-
try in some of the individuals (SI Fig. 4).

Given that previous investigations have 
shown that even low levels of genetic differen-
tiation can be discriminant for geolocalization 
(Novembre et al. 2008), we tested to what extent 
this was reflected in our dataset. We focused 
on Lesotho since the geo-coordinates for birth 

locations of individuals could be retrieved with 
confidence. In Namibia, samples belonging to 
the same ethnic group were either sampled from 
the same place or were impossible to assign to a 
geographic location and therefore this test could 
not be applied. 

For any two given individuals in Lesotho, 
we found a significant association between L2 
genomic and geographic distances but the amount 
of variation explained by this simple model 
was very small and the regression β coefficient 
was close to zero (β=6x10-⁶, R-squared=0.02, 
F1,1483=26.04, p-value<0.001). The association 
disappears when considering distances only 
within the Lowlands or within the Highlands of 
Lesotho separately, implying the lack of further 
structure at smaller distances within regions. We 
ran Procrustes analysis independently to confirm 
this result. We found that Procrustes supports a 
significant correlation between geographic dis-
tance and genetic distance between pairs of indi-
viduals (SI Tab. 5). 

Following this result, we explored whether 
the metadata collected could be correlated to the 
degree of genetic similarity between individu-
als. We initially ran simple regression analysis 
for each variable to identify those to be further 
explored. We tested the variables describing pairs 
of individuals in terms of their geographic prov-
enance (place of “Birth”, “Region” of residence 
and “Village” of residence) and cultural affilia-
tion (ethnicity and clan affiliation, the latter only 
for Lesotho as in Namibia the records were too 
incomplete and/or ethnicity was strongly corre-
lated with clan affiliation) (SI Fig. 8, SI Fig. 9). 
We also included information about birthplaces 
of parents and grandparents. We considered 
Namibia and Lesotho separately because they 
are geographically distant countries. All the vari-
ables were significantly associated with genetic 
distances between individuals, all with negative β 
coefficients except for “Clan” in Lesotho (SI Tab. 
2). Of all the variables, “Ethnicity” in Namibia 
explained the largest fraction of the variance, 
almost 20%. Taken singularly, the other vari-
ables tested in Namibia explain 3-5%, while in 
Lesotho the largest contribution is below 2%.

Fig. 2 - A) Histograms of inter-individual L2 
genomic distances within (in colour) and 
between ethnic groups (in grey, for Namibia 
only). The inter-population distances (in grey) 
refer to all the comparisons between the indi-
cated population and the rest of the Namibian 
groups. Basotho distances were estimated only 
within the population of Lesotho. Mean values 
of within and between populations genetic dis-
tances are reported in SI Table 4. B) Boxplots 
displaying intra-individual heterozygosity esti-
mates by population. 
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We then evaluated the degree of correlation 
between variables using the Phi coefficient (SI 
Tab. 3). In the Lesotho dataset the strongest sig-
nals of associations were by far those involving 
birthplaces of Parents-Grandparents and Parents-
Birth. “Clan” did not show any evidence of asso-
ciation. On the contrary in Namibia variables 
were all associated to some extent (SI Tab. 3).

We implemented a multiple regression analy-
sis that included all the explanatory variables (Tab. 
1). We found that for Lesotho four out of the six 
tested variables in the multiple regression model 
were significant. Three of them have a negative 
coefficient and one has a positive modulating 
effect. The final model explains about 3% of the 
total variation (R-squared=0.03, F6,3738=19.82, 
p-value<0.001), while the absolute contribution 
of the β coefficients was small, ranging between 
0.20 and 0.77 points (Tab. 1). In Namibia the 
multiple regression model found three of the five 
tested variables statistically significant, explaining 
35% of the variation in genetic distance between 
individuals (R-squared=0.35, p-value<0.001) 
(Tab. 1). The β coefficients were slightly larger 
than those in Lesotho, but “Ethnicity” was 
almost three times so. The sharing of birthplace 

locations at the individual and grandparent level 
did not contribute significantly to the model, 
possibly due to association with other variables 
(with “Parents” in Lesotho, with “Parents” and 
“Village” in Namibia; SI Tab. 3). 

Of the four significant variables found in 
Lesotho, three are broadly related to geography 
(“Parents, Village, Region”), whereas the fourth 
(“Clan”) is culturally defined and the only one 
generating an increase of L2 distances and dif-
ferentiation when shared. It has been previously 
shown that clan affiliation is paternally transmit-
ted with high fidelity in Lesotho (Montinaro et 
al. 2016). We confirmed this instance for our 
dataset (99% matching rate between partici-
pant and father’s clan; 99% of matches between 
father and paternal grandfather clans). We also 
observed that 77 out of 103 (75%) parental mar-
riages occurred between individuals belonging to 
different clans. In addition, more than 90% of 
the times at least one grandparent is from a clan 
different from the others, suggesting that clan 
membership does not represent a barrier for mar-
riage and mating in Lesotho. Furthermore, aver-
age genetic distances within clans are larger than 
between clans (389.94 vs 389.82), the difference 

Tab. 1 - Summary of the results obtained for the estimated beta coefficients (β) and intercepts of 
the multivariate regression models estimated for Lesotho and Namibia. NA: not applicable, as the 
variable was not tested (see Materials and Methods). *Excluded from analysis due to missing data 
in Namibia (SI Fig. 9).

LESOTHO NAMIBIA

MULTIPLE REGRESSION
VARIABLES

β COEFFICIENT P-VALUE β COEFFICIENT P-VALUE

Intercept 390.21 <0.001 394.19 <0.001

Parents -0.77 <0.001 +0.95 <0.001

Village -0.32 <0.001 +1.12 <0.001

Region -0.23 <0.001 NA NA

Clan +0.26 <0.001 NA* NA*

Ethnicity NA NA -3.03 <0.001

Birth -0.15 0.43 -1.06 0.012

Grandparents +0.07 0.68 -1.05 0.016
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being small but significant. To investigate possible 
elements shaping inter-clan marriage, we calcu-
lated an index of “clan consistency”. In this man-
ner, we obtained an average value of consistency 
for each clan, and, indirectly, of its permeability 
(measured as 1-consistency) (SI Fig. 10). We then 
ran multiple regression analysis explaining “Clan 
consistency” as a function of year of birth, region 
(Highlands/Lowlands), village of residency, and 
clan size (large/small; see Material and Methods). 
We found that being from a small clan and from 
the Lowlands region generated a statistically sig-
nificant decrease in clan consistency, β values 
-0.14 and -0.1 respectively (R-squared=0.15, 
F2,100=8.9, p-value<0.001). We reasoned that per-
meability might operate by increasing intra-clan 
genetic variation. We therefore tested the extent 
to which such dynamics might be reflected in 
the genetic profiles of individuals by comparing 
within clan L2 distances considering Lowlands 
and Highlands, small and large clans (SI Fig. 10). 
Unexpectedly, large clans and clans in the high-
lands showed significantly larger L2 distances than 
small clans and clans in the Lowlands despite both 
being less permeable (SI Fig. 10). 

We finally explored if and how metadata 
variables affected individual variation, meas-
ured as the degree of heterozygosity, consider-
ing Namibia and Lesotho separately. Of all vari-
ables tested (age, locations, consistency of clan 
of affiliation in Lesotho only, birthplaces of 
immediate ancestors, ethnicity) we found that 
clan consistency in Lesotho is the only one that 
modulates genome heterozygosity when tested 
singularly. A higher index of clan consistency cor-
relates negatively with heterozygosity (β=-0.004, 
R-squared=0.07,F1,101=7.14, p-value=0.009) but 
the contribution disappears when considered 
together with other variables. No variable was sig-
nificant for individual heterozygosity in Namibia.

The role of age and lactase persistence in shaping 
saliva microbiome composition 

Ethnicity does not play a role in determining 
the composition of the saliva microbiome since 
no evident population structure can be observed 
at phylum level (Fig. 1D). We also found no 

outstanding differences in composition at the level 
of the subset of species we looked at (SI Fig. 12). 
However, some patterns arise when looking at 
particular taxa and viruses (SI Fig.s 17,19 and 20). 

The pathogenic bacterial composition and 
pathogen load in the saliva of the populations 
investigated (Fig. 3A, SI Fig. 12) was similar. 
The mean and median content of pathogenic 
bacteria in the saliva in the dataset are 13.3% 
and 11.2% respectively. The highest mean load 
is among the Basotho (14.4%) and lower among 
the Namibian Bantu-speakers (Ovambo 12.5%, 
Himba 12.5%, Herero 11.3%), and intermedi-
ate in the Damara (13.7%) (Fig. 3A). ANOVA 
results show no statistically significant differ-
ences between the different populations (p-value 
= 0.423). Overall we found no evidence for dif-
ferential pathogen load in the saliva between 
these groups.

However, we found striking differences 
between Lesotho and Namibia regarding the 
viral load in the saliva (Fig. 3C). The viral load 
among Namibian groups is very low, with many 
individuals below the threshold of detection 
(44%) compared to Lesotho (27%). In Lesotho 
we found more individuals with elevated viral 
loads and many outliers with outstanding loads 
(around 15% of the sample size). 

HIV is not detectable in saliva. However, 
since its prevalence among the adult male popu-
lation in Lesotho is very high (~25%) we decided 
to check whether traces of HIV in the saliva 
could be behind this observed difference between 
the two countries. As expected, we did not find 
any HIV sequences in the saliva metagenomic 
data. Even after mapping individuals with the 
highest viral loads specifically to the HIV-1 refer-
ence genome.

The viral load is almost entirely driven by 
the amount of human herpesvirus 4 (HHV-
4), known as the Epstein-Barr virus (Fig. 3D). 
High amounts of HHV-4 can be associated with 
high prevalence of HIV, as the former can be a 
hitchhiking co-pathogen (Munawwar and Singh 
2016). Highest viral load carriers are individuals 
born in Lesotho between 1959 and 1979 (Fig. 
3E). We also observed an unexpected deficit of 
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people of that same age group (between the ages 
of 35 and 49 in 2009 when sampling took place) 
(SI Fig. 13), even after correcting for migration 
rate by age group (SI Fig. 14, SI Fig. 15) (United 
Nations 2023). 

We wondered if the impact of the HIV pan-
demic could have affected the genetic profile of 
people on Lesotho by operating as a selective 
pressure on the frequency of alleles associated 
with protection against HIV. We tested if SNP 
rs9264942, known to confer certain protec-
tion against HIV effects (Herráiz-Nicuesa et al. 
2017), had different allele frequencies in differ-
ent cohorts (SI Fig. 16) but we did not detect 
significant shifts in the frequency of this variant, 
perhaps due to sample size limitations.

We then explored the possible relationship 
between host genotypes and microbiota com-
position by focusing on the metabolic ability of 
digesting lactose. It has been previously shown 
that a negative correlation exists between the 
occurrence of Bifidobacterium and the abil-
ity of the host in digesting lactose (Goodrich 
et al. 2016). Similar to Bifidbactierum, also 
the presence of Lactobacillus is related to the 

consumption of milk-related products (Vlasova 
et al. 2016). Interestingly, lactase persistence 
(LP) phenotype is variable in Namibia (Breton 
et al. 2014; Macholdt et al. 2014), and such vari-
ation offers the opportunity to explore the link 
between bacteria associated with dairy products 
consumption and LP alleles. 

We evaluated the traces of Bifidobacterium 
and Lactobacillus in the saliva, two widely recog-
nised genera with probiotic properties (Goodrich 
et al. 2016; Vlasova et al. 2016) whose presence 
is conditioned by the ability to digest lactose by 
the host. We found that Lactobacillus is ubiq-
uitous in all populations with detection rates 
between 80-98%. Nonetheless, some popula-
tions (Ovambo, Himba, Basotho) display greater 
relative prevalence of Lactobacillus than others 
(Damara, Herero) where it is only detected at 
minimum threshold levels (Fig. 4). The detec-
tion rate of Bifidobacterium is different, it ranges 
between 45%-60% in the Ovambo, Herero, 
Himba and Basotho. The prevalence in these 
groups is always extremely low percentages just 
above threshold detection (Fig. 4). Remarkable 
traces of Bifidobacterium are found only in the 

Fig. 3 - A) Pathogenic species load in the saliva. B) Correlations between participants age at the time 
of collection and saliva alpha diversity (Shannon index) at phyla level and  a subset of pathogenic 
species. C) Total viral load in saliva for Lesotho and Namibia. D) Viral load of HHV-4 in saliva by age 
group and country. E) Viral load of HHV-4 by sample by year of birth in Lesotho.
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Damara (Fig. 4). The rate of detection (>80%) 
is also considerably higher among the Damara 
compared to other groups (Fig. 4). 

To further investigate correlation between the 
presence of Bifidobacterium in saliva and the ability 

to digest lactose at the population level (Ranciaro 
et al. 2014; Anguita-Ruiz et al. 2020; Campbell 
and Ranciaro 2021), we calculated the prevalence 
of the allele -14010*C in gene MCM6 that confers 
post-weaning LP phenotype in these populations 

Fig. 4 - A) Bifidobacterium and Lactobacillus rates of detection by population and prevalence in the 
saliva microbiome of each individual in Lesotho (LST) and Namibia (NMB). B) Allele frequency of 
SNP rs145946881 corresponding to each group at the bottom plot. The SNP is variant -14010*C in 
gene MCM6 (chr2:136608746 in Hg19 reference genome) which confers  ability to digest lactose.
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(Fig. 4) (Tishkoff et al. 2007b; Jensen et al. 2011; 
Macholdt et al. 2014; Macholdt et al. 2015). We 
found this variant in all Bantu-speaking groups of 
both countries, with 4% prevalence in Lesotho 
and around 8% frequency in Namibia (Fig. 4). 
This result is consistent with known allele frequen-
cies for some of these groups (Breton et al. 2014; 
Macholdt et al. 2014; Anguita-Ruiz et al. 2020). 
No apparent imputation bias despite poten-
tial role of selection in driving loci frequency 
(Burger et al. 2020). The allele is not present in 
the Khoisan-speaking Damara despite being the 
population with highest admixture related to the 
Khoisan-speaking Nama which carry this allele in 
high frequencies (Breton et al. 2014; Macholdt 
et al. 2014). We observed that high proportions 
of Bifidobacterium and Lactobacillus are always 
found in individuals that are non-carriers of the 
LP allele. Carriers of the allele (23 individuals 
out of 249 in the dataset) do not display traces 
of the strains in the case of Bifidobacterium and 
with only a couple of exceptions in the case of 
Lactobacillus (SI Fig. 17).

We explored what metadata variables 
(“YoB”, “Ethnicity”, “Region”, “Parents/
Grandparents” and heterozygosity) might affect 
alpha diversity using both phyla and a subset 
of putative pathogenic bacteria (Warinner et 
al. 2014) (Fig. 3A). We found that saliva alpha 
diversity is independent of all variables tested 
except for age (Fig. 3B). We did not detect rar-
efaction bias in the alpha diversity since meas-
urements were found to be independent from 
the number of metagenome reads of each sam-
ple (SI Fig. 18).

We found that age shows a weak but signifi-
cant negative correlation with alpha diversity in 
the saliva. The Shannon index (H’) for phyla 
diversity decreases with age (Tab. 2). This is 
also true when only putative pathogenic species 
(Warinner et al. 2014) are considered (Tab. 2) 
(Fig. 3B, SI Fig. 19). 

The three most common pathogens were P. 
gingivalis, V. parvula and T. forsythia. While P. 
gingivalis and V. parvula seem to be in competi-
tive exclusion, P. gingivalis and T. forsythia occur-
rence appear to be synergistic (SI Fig. 20).

Discussion

In this work we attempted to capture which 
socio-cultural factors in one’s life can shape inter 
and intra-individual genomic differentiation (Uren 
et al. 2016; Montinaro et al. 2016, 2017; Atkinson 
et al. 2022) and salivary metagenomic composi-
tion, using Lesotho and Namibia as case studies. 

We found small scale geography-related fac-
tors with small effect, replicating patterns that 
are seen at continental level (Novembre et al. 
2008; Prugnole et al. 2005; Ramachandran et al. 
2005; Li et al. 2008; Vicente et al. 2019). 

This observation was made in Lesotho. Our 
results indicate that physical distance between 
participants’ place of origin is predictive of 
genomic affinity. For pairs of individuals within 
the same ecozone (Highlands or Lowlands) 
genomic distances are smaller compared to trans-
ecozone measurements. The contribution of the 
effect is significant but small, both in terms of 
explained variation and coefficients. This pattern 
is not replicated when considering measurements 
within each ecozone. 

We found complex interactions between 
the variables in the multiple regression models. 
Some variables capture the information provided 
by others that are significant in simple regres-
sions. Our models were also sensitive to filtering 
of individuals by degree of missing data.

For example, sharing the same birthplace 
of at least two grandparents was found not sig-
nificant in Lesotho and Namibia when together 

Tab. 2 - Simple regression model fits for the asso-
ciation between age and saliva alpha diversity 
calculated with phyla metagenomic composition 
and putative pathogenic species composition. 

SIMPLE 
REGRESSION - 
AGE & H’

PHYLA PATHOGENIC 
SPECIES

β coefficient -0.003 -0.005

R-squared 0.09 0.07

p-value <0.001 <0.001
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with the other variables. The informativeness is 
captured by the sharing of birthplaces at paren-
tal level (“Parents” variable in Table 1, SI Fig. 2). 

These results suggest that lack of information 
about the grandparents is not particularly con-
cerning if the same information is already known 
about the parents. However, we caution that it 
might not hold true universally. In European 
contexts grandparents metadata has been shown 
to be informative of the genetic composition of 
individuals (Leslie et al. 2015; Bycroft 2018; 
Raveane et al. 2019).

Cultural variables like “Ethnicity” and “Clan” 
affiliation contribute significantly to inter-indi-
vidual genetic distances. When the overlap in 
contributions by different variables was tested 
by removing one variable each time, we noted 
that only cultural-related variables remained 
unaffected, indicating their non-redundant con-
tributions to the description of patterns of local 
diversity in opposition to geography-related ones 
(birthplaces of “Parents” and “Grandparents”). 
However “Ethnicity” in Namibia and “Clan” in 
Lesotho operate differently. 

When not shared, “Ethnicity” is the major 
contributor to genetic differentiation in Namibia 
despite some shared origins and gene-flow 
between groups (Uren et al. 2016; Schlebusch et 
al. 2012; Pickrell et al. 2012; Oliveira et al. 2018).

In Lesotho, sharing “Clan” affiliation con-
tributes to increased inter-individual differen-
tiation. This effect appears to be driven by the 
influence of large clans that are genomically 
more heterogeneous than small ones. This is 
supported by evidence from the Y chromosome. 
Although paternal co-transmission of Y chro-
mosome lineages and clan membership is well 
attested, clans are also very variable in Y chromo-
some haplogroup composition (Montinaro et al. 
2016). Large clans have the lowest permeability 
for members of other clans marrying into them 
(in the last two generations). Large clans also 
have the largest variance of intra-clan genomic 
distances (SI Fig. 10). 

Based on these findings, we infer fluid social 
dynamics that led these large clans to be more 
heterogeneous units today. Our results suggest 

an amalgamation of peoples for the origin of 
modern large clans in Lesotho. Interestingly, this 
is actually reflected in the socio-political events 
developing in Lesotho during the late 19th cen-
tury under the leadership of Moshoeshoe I.

We also observed that inter-clan marriages are 
influenced by the sampling location (Lowlands or 
Highlands). Clans in the Highlands showed sim-
ilar permeability but larger inter-individual dis-
tances than Lowlands, which reflect a more het-
erogeneous genomic composition in this region.

Overall, our results are in line with previ-
ous observations reporting geography as a pre-
dictor of genomic similarity between individu-
als, even at smaller scales in Lesotho. Despite 
Lesotho being a highly homogeneous country, 
we detected a subtle ongoing process of genomic 
differentiation between regions.

In Namibia, Ethnicity is the main force 
behind genomic distances. However, Namibia 
has very low population density and ethnic 
groups are highly structured territoriality, there-
fore an implicit correlation with geographic dis-
tances exists, despite signatures of past and ongo-
ing gene flow between groups. 

The importance of the parental birthplaces 
above other variables highlights the role of recent 
family history and the limitations of mobil-
ity that shape inter-individual genomic affin-
ity. This is a clear example of the mechanisms 
behind isolation by distance, a common phe-
nomenon in human populations across conti-
nents. It also highlights that signals observed at 
macro level, in part, arise from multiple local 
small contributions.

The broad composition of saliva microbi-
omes in our dataset is consistent with previous 
reports (Murugesan et al. 2020). We found no 
correlation between geography or ethnic divi-
sions and microbiome composition in the saliva 
(Ruan et al. 2022). We reason that other factors 
must be responsible for differences in metagen-
omic composition, in accordance with Shaw et 
al. (2017). 

However, we found a correlation between age 
and saliva microbiome alpha diversity (Takeshita 
et al. 2016; Lewy et al. 2019; Murugesan et al. 
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2020). We show that this correlation is nega-
tive and, although weak, significant (Fig. 3B). 
Overdominance of certain putative pathogens 
linked to diseases more typical in the old age, 
such as gingivitis and periodontal disease (e.g. P. 
gingivalis, T. forsythia), (SI Fig. 15, SI Fig. 16) 
seem to be the cause for this negative correlation. 
However, we did not find statistical support for 
any particular taxa. Although we did not find 
evidence that Bacteroidetes is an overrepresented 
taxa in the elderly, we show that Bacteroidetes 
is a key contributor to saliva microbiome vari-
ability (Fig. 1D).

Regarding host-microbiome dynamics, we 
focused on Lactobacillus and Bifidobacterium 
although saliva is likely not their preferred 
niche. However, we observe that Lactobacillus 
is easily found in the saliva of all groups (Fig. 
4) regardless of the LP allele in the popula-
tion. Interestingly, a noticeable percentage 
of the Ovambo, Himba and Basotho, all of 
them populations with LP phenotypes, display 
high quantities of Lactobacillus. Whereas the 
Damara and Herero show a minimum preva-
lence level despite similar high detection rates. 
On the other hand, Bifidobacterium appears to 
be detected in about half of the individuals in 
each of the Bantu-speaking groups and with low 
prevalence. It is only in the Damara (non LP) 
where high detection rate and high prevalence 
can be observed (Fig. 4). 

We reason that these high traces of 
Lactobacillus might actually be related to con-
sumption of fermented dairy products (e.g. Mafi, 
Omashikwa) typical in these countries (Gadaga 
et al. 2013; Misihairabgwi and Cheikhyoussef 
2017). This would mean that the Lactobacillus 
presence in the saliva is not directly linked to the 
LP genotypes. Bifidobacterium presence in saliva 
appears to actually be conditioned by host geno-
type since it is only able to prevail significantly in 
the Damara, the only population in the dataset 
with no LP alleles. Notably, this replicates known 
interactions of host-Bifidobacterium in the gut 
(Goodrich et al. 2016). In addition, both taxa do 
not thrive within individuals with LP genotypes 
(SI Fig. 17).

The excess of HHV-4 viral load in the saliva 
of Lesotho (Fig. 3C) is striking but might have a 
simpler explanation linked to the HIV epidemic 
in the country. Due to the nature of the virus 
itself, we were unable to detect HIV in the saliva. 
However, since HHV-4 is commonly transmit-
ted via saliva it was easily traceable in our sam-
ples. Since HHV-4 is correlated with HIV load 
(Talenti et al. 1993; Sachithanandham et al. 
2009, 2014; Di Gennaro et al. 2023; Wan et al. 
2023), we argue this might be a good proxy to 
infer HIV infection. This explains the contrast 
with Namibia and fits with the profile of the age 
group that is most affected (30 to 50-year-olds 
in 2009). This same age range of males has been 
shown to be the one more impacted by HIV 
infection (Schwitters et al. 2022). The deficit 
of people is particularly acute for those born 
between 1965 and 1969. 

This missing percentage of the population is 
likely due to excess mortality caused by the HIV 
epidemic that spread rapidly among the youth 
of the 1990s decade (SI Fig. 15). Those born 
between 1959 and 1979 were likely to be more 
sexually active in the 1990s and therefore more 
exposed to HIV during the height of the epidemic 
that hit Lesotho extensively worse than Namibia.

These results validate saliva microbiome 
use to explore local dynamics relating to diet 
and health at population level through a low-
pass sequencing strategy. Firstly, by means of 
illustrating how both culture and genes can 
condition dietary practices. Secondly, by prov-
ing differences between countries hit differently 
by a viral epidemic in the 1990s. Future stud-
ies should expand the sample size and focus on 
the impact on the genome of such elevated viral 
load in Lesotho. In particular, trying to uncover 
whether any natural selection has occurred in 
a given loci due to the great selective pressure 
exercised by the HIV epidemic. We caution 
however, that our sample size was small and we 
lacked true case and control HIV groups to sys-
tematically approach this question and a signal 
might have gone undetected in our analysis. 
Significant findings on this front could have 
important medical implications.
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