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Complexity in human ancestral demography
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Demography – the size and structure of popu-
lations, and the movement of individuals within 
and between them – is central to how we describe 
and understand the events of human evolution. 
But while archaeology can reveal the presence of 
people at a certain time and place, and genetic 
data may indicate their shared ancestry with oth-
ers, we rarely have direct evidence for how many 
people there were or in what groups they lived. 
Therefore the inference of these and other aspects 
of the past using demographic models is a focus 
for many genetic and archaeological studies.

Traditionally, models of ancestral demography 
have emphasised the branching and divergence 
of populations around the world, representing 
human demographic history as a tree. Thus, the 
default picture has been one in which the rela-
tionships between human populations mirror 
those between species in the tree of life. This way 
of thinking emerged to some extent from older 
racially-motivated ideas about anthropological 
diversity, and was partly reinforced (particularly 
outside genetics) by the fact the first sources of 
genetic evidence for human population history 
were mitochondrial and Y-chromosomal DNA, 
which as single genetic loci were fully described by 
genealogical trees. However there are often good 
reasons to use simple models even when exploring 
complex phenomena, and tree models have the 
advantage that they are relatively easy to imple-
ment and to interpret in terms of many ques-
tions of interest. In this context, putative episodes 
of gene flow between populations (which are 
incompatible with a tree-like demography) have 
generally been examined in terms of model fit 
and thus treated implicitly as exceptional events. 
Sometimes this is made explicit by casting admix-
ture as an alternative hypothesis in contrast to the 
‘null’ model of tree-like population divergence. 

However it is now clear that admixture, gene 
flow and migration have been ubiquitous in human 
demographic history, and not infrequent events 
(Korunes and Goldberg 2021). In light of this, 
trees become more difficult to interpret and their 
parameters less meaningful. What, for example, 
does the inferred split time between two popula-
tions mean in the context of gene flow after diver-
gence, or when there have also been interactions 
with multiple other populations? To deal with these 
and similar questions, more complex models and 
approaches have been developed. In particular, two 
kinds of model are predominantly used in pale-
ogenomic studies to investigate demography and 
genetic ancestry, namely ‘isolation-migration’ (IM) 
models and admixture graphs. 

An IM model comprises one or more dis-
crete populations, each with an explicit size, and 
a branching topology describing the history of 
relationships between them, including divergence 
events (leading to isolation) and gene flow (due 
e.g. to migration). Gene flow may be represented 
either as pulses of admixture with no extension in 
time or as intervals of continuous flow at a specified 
rate, constant or otherwise (Fig. 1A). IM models are 
graph-like, in that when restricted to pulsed gene-
flow events and piecewise-constant population sizes 
the model has a straightforward graph representa-
tion. However with continuous gene flow and con-
tinuously varying population sizes things become 
more complex, and the parameter space consider-
ably larger. IM models can be inferred from data 
quantifying the genetic differences within and 
between sampled populations, and in general 
the inference (particularly of population sizes) is 
improved by including more genomes, although 
the genetic coalescent process limits this as one 
looks further back in time. Different implemen-
tations (e.g. Gronau et al. 2011; Hey et al. 2018; 
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Kamm et al. 2020) have taken a wide variety of 
approaches to the problems of model specification 
and parameter inference, and IM models are also 
the demographic framework used by coalescent 
simulators such as msprime (Kelleher et al. 2016).

An admixture graph describes the genetic 
ancestry of a set of samples in terms of correlations 
between their sequences (Patterson et al. 2012). 
One can think of it as representing the flow of 
shared ancestry information (in the form of geno-
type correlation) from ancestors to descendants, 
information which flows and dissipates along 
the graph edges, diverges or converges at internal 
nodes, and terminates at the leaf nodes, where we 
sample it (Fig. 1B). Unlike IM models, admix-
ture graphs are not strictly demographic models, 
in the sense that they do not explicitly represent 

population sizes and timescales. However for any 
admixture graph one can construct a family of 
equivalent IM models (Fig. 1C) whose popula-
tions correspond to admixture graph edges, and 
where divergence and admixture events corre-
spond to admixture graph nodes. Thus the struc-
ture of an admixture graph tells us about demo-
graphic history, albeit from a perspective deter-
mined by the samples chosen as leaf nodes.

Both IM models and admixture graphs are 
valuable tools for investigating complex demog-
raphy, and are widely used with a variety of algo-
rithmic approaches. However, except where there 
are very few sampled sequences or taxa, inference 
is typically carried out only on the non-topological 
parameters of the model (such as effective popula-
tion sizes, times, drift and admixture parameters). 

Fig. 1 - A - An IM model, comprising finite populations (solid blocks, labelled by size) connected by 
divergence and gene flow events (horizontal lines). The vertical dimension represents time, with 
earlier events at the top. In the model shown there are two gene flow events: an earlier continuous 
episode and a later pulse of admixture; to fully specify the model, migration parameters (rates or 
fractions) need to be given for each.
B - An admixture graph is a directed acyclic graph in which each edge points forwards in time and 
leaf nodes represent sequences (or collections of sequences) for which we have data. Edges are 
labelled by the strength f of genetic drift along them (typically in units of FST / 1000) and by their 
proportional contribution α to the downstream node (with contributions from input edges at any 
node summing to one). Implementations of this structure may vary; for example in one common 
implementation, edges with α < 1 ‘admixture edges’ are restricted to have f = 0, necessitating the 
inclusion of additional nodes and edges.
C - An IM population of effective size Ne, extending for a time T, corresponds to an admixture graph 
edge with drift parameter f = 1 – exp(–T / 2Ne), and the proportion of migrant genomes in an IM 
population following a gene flow pulse corresponds to the input edge flow contribution in the admix-
ture graph. Under this equivalence, leaf populations are related by the same genetic correlation 
structure. Note however that due to its explicit representation of population sizes and times, an IM 
demography also models aspects of genetic data not represented by an admixture graph. Similarly, 
continuous gene flow in an IM model has no straightforward equivalence in an  admixture graph.
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Indeed branch length parameters can often be 
inferred efficiently, for example by taking advan-
tage of the conditional independence of subgraphs 
given their ancestral nodes. But as yet no equivalent 
approaches exist to optimise over the vast space of 
possible topologies, so in general the topology itself 
is arrived at by a combination of practitioner exper-
tise and heuristic methods. Ultimately this is prob-
lematic, because it means our ability to reconstruct 
ancient demography may be strongly influenced by 
prevailing ideas and prior expectations.

It should be noted that topology inference was 
already a problem even with strict tree models. The 
number of rooted tree topologies for n taxa is given 
by (2n – 3)!!, so for example with 10 taxa there 
are already over 34 million topologies to consider, 
many of which will be indistinguishable unless the 
data are sensitive to differences in branching deep 
within the tree. This problem is even more acute 
in an admixture graph or IM model, where the 
space of topologies is much larger.  

This is a key challenge for ancestral demo-
graphic inference, and thus for the field in gen-
eral. Demographic models often form the basis for 
conjecture about the relationships between ancient 
peoples, sometimes including hitherto unobserved 
‘ghost’ populations. For most time periods and in 
most regions it is no longer reasonable to make 
the default assumption of no gene flow between 
human populations, and while ancient DNA can 
be very informative for these questions, its avail-
ability is not something we can rely on as a mat-
ter of course. Depending on what samples we use 
and which topologies we consider, our best-fitting 
models may exclude important components of the 
true demographic history. It is difficult to know 
whether, for example, inferred common ancestry 
is due to direct interaction between certain ancient 
populations or an indirect relationship via other 
unobserved groups. Similarly, a putative ghost 
population may indeed have existed as a prehistoric 
society, or may be an abstraction of something far 
less coherent. Such distinctions can be important 
when relating genetic inferences to archaeological, 
historical or other evidence. 

Methodologically we would like to be able 
to fully sample the space of graphs for different 

sample choices. Among other things, this would 
allow us to use statistical and machine learning 
approaches which have been applied success-
fully to many other complex inference problems, 
including in evolutionary genetics (Schrider and 
Kern 2018). There are also relevant approaches in 
other fields, particularly machine learning, where 
directed acyclic graphs (DAGs – a category which 
includes all the graphs described here) are very 
widely used, and the question of learning graph 
structure is a long-standing one (Kuipers and 
Moffa 2018). Possibilities may also be found else-
where within population genetics, where much 
work has been devoted to inference of the ances-
tral recombination graph (ARG), representing 
the common genetic inheritance of one or more 
sampled chromosomal sequences. Importantly, 
an ARG is a connected DAG with essentially the 
same topology as an admixture graph, and hence 
the same algorithms used for generating, sampling 
and inferring ARGs can in principle be applied.

We have focused on graph-like models, which 
represent demography in terms of populations 
and gene flows, as they are widely used and map 
naturally onto theoretical concepts in population 
genetics. But populations are themselves a much-
simplified abstraction. If complexity was no object, 
a more realistic depiction might represent individu-
als living, moving and interacting within a spatial 
landscape, with the process of genetic inheritance 
governing the transmission of haplotypes to their 
offspring. Due to the complexity involved, such 
models have yet to be developed or implemented 
on a scale sufficient to investigate human ancestry 
and demography. However, some theoretical and 
practical progress has been made, for example in 
exploring models with explicit spatial-genetic rep-
resentations, which have provided valuable insights 
into the nature of genetic evolution in a spatial 
domain (Barton et al. 2010; Bradburd et al. 2018; 
Al-Asadi et al. 2019; Battey et al. 2020). These and 
similar approaches have the potential to open up 
new possibilities for evolutionary inference.  

For now, even while topology inference remains 
prohibitive for large datasets, users of demographic 
models should still consider how they might better 
explore and communicate the robustness of their 
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inferences. This might include, for example, more 
systematic ways of presenting the range of models 
considered and greater emphasis on the motivation 
and reasoning behind the expert choices involved. 
Some recent studies have indeed begun to do 
this, particularly where key findings depend on 
the structure of the graph (e.g. Ning et al. 2020), 
although the discussions remain abstruse for non-
expert readers. Elsewhere some datasets (or key 
subsets of data) are small enough to allow a more 
intensive computational investigation of the model 
space, and useful progress has recently been made 
on ways to facilitate this (Leppälä et al. 2017; Hey 
et al. 2018; Yan et al. 2020; Molloy et al. 2021). 
Such approaches should perhaps be standard where 
feasible. We can hope that increases in computing 
power will gradually enlarge this category, and with 
the approaches mentioned above, or others unfore-
seen, will enable us to better investigate the com-
plexity of human ancestral demography.
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