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Summary - Network theory has been extensively used to model the underlying structure of biological 
processes. From genetics to ecology, network thinking is changing our understanding of complex systems, 
specifically how their internal structure determines their overall behavior. Concepts such as hubs, scale-free 
or small-world networks, common in the complexity literature, are now used more and more in sociology, 
neurosciences, as well as other anthropological fields. Even though the use of network models is nowadays so 
widely applied, few attempts have been carried out to enrich our understanding in the classical morphological 
sciences such as in comparative anatomy or physical anthropology. The purpose of this article is to introduce 
the usage of network tools in morphology; specifically by building anatomical networks, dealing with the 
most common analyses and problems, and interpreting their outcome.
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Introduction

In recent years, network theory has been 
widely used as an operational framework to ana-
lyze complex systems and their relational proper-
ties (Watts & Strogatz, 1998; Barabási & Albert, 
1999;  for a review see Newman, 2003). Indeed, 
network theory has been applied to a wide range 
of complex biological phenomena, from the self-
organization of genetic regulatory pathways to 
patterns of community assembly in ecosystems 
(Jeong et al., 2001; Salazar-Ciudad & Jernvall, 
2002; Képés, 2007; Manson & Verwoerd, 
2007; Dunne et al., 2008; Tyler et al., 2009). 
Furthermore, networks have been used to under-
stand many aspects of human biology, includ-
ing genetics (Franke et al., 2006), neurosciences 
(Sporns et al., 2004;  Hagmann et al., 2008), and 
social relations (Milgram, 1962; Wasserman & 

Faust, 1994). In fact, it was in the context of stud-
ies on human social relationships where networks 
came into use to address biological problems, e.g. 
the spread of diseases (Klovdahl, 1985).

Ever since the fundamental principles of 
comparative anatomy were laid down in the 19th 
century by classic anatomists like George Cuvier, 
Geoffroy St. Hilaire, or Richard Owen, con-
nections among anatomical elements have been 
essential for the recognition of biological homolo-
gies. Few studies have addressed the possibility of 
implementing an adequate methodological tool to 
use connectivity patterns to study morphological 
organization, although ideas emerged in such direc-
tion. For example, Woodger (1945) proposed a 
systematic use of topological information by creat-
ing a theoretical framework for the identification of 
anatomical parts as being distal, proximal, or articu-
lated to others in their neighborhood, i.e. recalling 
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the original Geoffroy’s proposals. Mathematically, 
Woodger’s framework was based on the use of 
group theory to analyze phenotypic transforma-
tions during development, as well as for the iden-
tification of homologies. Rashevsky (1954) was a 
pioneer in representing the complexity of biologi-
cal organization by means of graphs, a step beyond 
Woodger’s use of group theory. Although he briefly 
discussed their possible application in anatomical 
systems, all his work revolves around functional and 
physiological problems, making it difficult to apply 
them to purely anatomical systems. Riedl (1978) 
introduced graph diagrams only for the use of rep-
resentation for the anatomy of a mammal skull 
using positional relationships (i.e. connectivity) 
to identify homologies. The first attempt at using 
graphs and network theory in comparative anat-
omy is Rasskin-Gutman & Buscalioni (2001) and 
Rasskin-Gutman (2003). The former is a descrip-
tive exploration of the theoretical morphospace of 
archosaurs pelvic girdles, whereas the latter uses 
cellular automata to build graphs according to a 
series of rules that are based on how skull bones 
are connected on archosaurs skulls. In these works, 
several suggestions about complexity measures were 
made, along with quantitative ways to study the 
structural relationship among skeletal parts. In par-
ticular, Rasskin-Gutman (2003) showed a consist-
ent approach at using graphs with vertebrate skulls.

An efficient characterization of the many lev-
els of morphological information that describe 
any anatomical system ought to unveil key prop-
erties involved in their evolvability (Bastir, 2008). 
Here, we show a new topological methodology 
based on network theory that offers a suitable 
way to characterize complex anatomical struc-
tures, providing an independent assessment of 
integration and modularity issues based on con-
nectivity rather than size and shape, and hence 
complementing existing morphometrics tools.

Methodology and Theory

Network Models
The simplest type of network is a set of vertices 

connected by edges, in which vertices correspond 

to the elements of a system while edges indicate 
the presence of an interaction that puts them in 
relation. Other information may be introduced 
in a network by using more than one type of ver-
tices and edges, or properties associated to them. 
Thus, the edges can carry weights that measure 
the strength of the interaction, i.e. ‘weighed’ net-
works, or be directed to represent non-reciprocal 
interactions, i.e. ‘directed’ networks. Building a 
network model of an anatomical system of the 
type we propose here can provide useful informa-
tion about the organization of such system. For 
example, the network model of an skeletal part 
might show a high degree of clustering indicat-
ing a specific pattern of integration and modu-
larity that would otherwise go unnoticed (i.e., 
by using conventional morphometrics tools in 
which only size and shape information is cap-
tured, whereas connectivity information is only 
present collaterally when landmarks are located 
within sutures). Digging deeper into the proper-
ties of such a network could show the presence of 
a small-world structure (i.e. a particular arrange-
ment of connections that brings closer the parts 
of the system), which would further indicate that 
some specific parts, and no others, are essential 
for the integrity of the system, providing impor-
tant clues about its evolvability. For example, it 
is reasonable to expect that a highly connected 
bone would be more likely to be conserved than 
a poorly connected one, which could be lost or 
fused to another bone in the course of evolu-
tion. The power of network models lies in their 
apparent simplicity, able to capture the essential 
relations among their parts. In order to model 
skeletal systems we use unweighted, undirected 
networks, which will be the focus of the next sec-
tions, and from which more complicated forms 
can be derived.

An Anatomical Network Model
To start building the network model of an 

anatomical system the first step is to identify the 
elements of the system and the interaction we 
want to model. Elements and interactions must 
have unique definitions that allow them to be 
traceable in all regions of our system and, in case 
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we want to use networks in a comparative frame-
work, in other related systems. However, global 
organizational patterns could also be subject to 
comparisons, thanks to the level of abstraction 
of network theory, e.g. to compare the internet 
with the neural systems of animals. In Figure 1 
we sketch the kind of abstraction needed to build 
anatomical networks of bone connectivity. Here, 
the entire bones are abstracted as the nodes or ver-
tices of the network and the sutures or physical 
junctions are the edges or links that connect them.    

Information about elements and interactions 
is codified in matrix form. An adjacency matrix 
is a square N x N matrix, where N is the total 
number of vertices in the network, and each 
interaction value between two connected (i.e. 
adjacent) elements is noted down in the matrix 
cells. The standard notation is a binary code of 
1 for presence of connection and 0 for absence; 
in networks without loops (i.e. connection from 

a vertex to itself ) the diagonal cells are marked 
with 0. Some software for network analysis may 
demand other kinds of file formats, but all of 
them can be obtained from matrix files (some 
of these programs are listed later on in the Info 
on the web section). The adjacency matrix of an 
anatomical system is the raw material for further 
analyses. The degree of a vertex (k) is the num-
ber of edges connected to that vertex (e.g. a ver-
tex connected to other four vertices has k = 4). 
Density is the total amount of existing connec-
tions in a network in relation to the total maxi-
mum possible, given its size. This has been taken 
as a measure of network complexity in metabolic 
and ecological networks, because a higher con-
nectivity is related to the achievement of many 
functional responses in such networks. However, 
the way these connections are disposed provides 
also important information about the organiza-
tional principles that generate them.

Fig. 1 - Abstraction process in the construction of anatomical network models. (A) We depart from an 
anatomical system, e.g. the human skull or a bird hindlimb, identifying our anatomical elements that 
will be represented by vertices. In these cases, the relation we model is the presence of a bone junc-
tion, e.g. fibrous joints in the skull and synovial joints in the hindlimb. (B) Labeled vertices and edges 
may be drawn as a graph. (C) Other relationships between parts, such as composition, position, orien-
tation, shape, and size, are meaningless in the network model, and hence, vertices can be represented 
in any way as long as their connections are maintained properly. (D) The network connectivity pattern 
is codified in a binary adjacency matrix of presence/absence ready to be analyzed, 1s for presence of 
connection and 0s for absence. Notice that in unweighted networks adjacency matrices are symmetric.
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The Degree Distribution
The degree distribution, Pk, is the frequency 

of vertices in the network that have degree k. We 
can plot our network Pk as a histogram of the 
degree of vertices. Although it is the simplest 
statistical information of network organization, 
it usually is enough to determine its basic prop-
erties. The functional form of this distribution 
is informative about the structural organization 
of connections, e.g. random or biased, and also 
about processes involved in how the network 
grows, e.g. preferential attachment rules. In ran-
dom networks, in which edges are set with equal 
probability between any two vertices, the Pk fits 
Poisson functions. In contrast, almost all bio-
logical network distributions are right-skewed, 
having an exponential or potential decay of 
frequency as degree increases. Moreover, the Pk 
may show a different distribution if we focus in 
either the network as a whole or subparts of it.

Almost all automatic routines in open license 
software (e.g. Pajek and Network Workbench 
Toolkit; see Info on the web section) output 
directly the frequency of each degree value in the 
network, so the analysis of this data requires sta-
tistical packages. However, anatomical networks 
face statistical problems due to their small size, 
i.e. they have a total number of vertices of around 
two orders of magnitude. Because of this, good-
ness-fit tests to identify the functional form of a 
distribution may be affected. A good solution to 
this problem is to work with cumulative degree 
distributions (see Appendix II in Dorogovtsev 
& Mendes, 2003), which describe the number 
of vertices with degree greater than or equal to 
k. This procedure allows fluctuations to be less 
pronounced, and improves the identification of 
the functional forms by reducing noise in the 
tail of the distribution. In Figure 2 we show the 
whole network of a human skull of n=21 bones, 

Fig. 2 - The human skull described as a network of 21 bones, showing its particular pattern of con-
nections (A), which can be represented by the degree distribution (B) or the cumulative degree 
distribution (C). The reduction in fluctuation when we use the cumulative distribution instead of 
the raw degree distribution is notorious. This methodological trick helps to visualize the theoretical 
model that better fits a small size network, in this case a power-law distribution.
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in which the adult mandible an isolated, not 
sutured bone, is not part of it. Both degree distri-
bution profiles are shown as a way of comparison.

The Small–World Effect: Paths and Clusters
In network theory edges are also used as length 

units. If we consider all the edges in a network 
to have length 1, then the distance between two 
vertices is equal to the number of edges that sepa-
rate them. The distance that separates any two 
vertices is called their ‘path length’ (e.g. vertices 
connected by one edge have a path length equal 
to 1). When there is more than one possible path 
between two vertices, the shortest is considered 
the path length. The characteristic path length of 
a network, L, is the arithmetic mean of all paths 
among its vertices. Surprisingly, most networks 
seem to be connected by a shorter L than ran-
dom networks with the same number of vertices 
and edges. This drop in L occurs because of the 
linking up of two distant vertices; such short-cuts 
connect vertices that would otherwise be much 
farther apart than in random networks. Moreover, 
these new edges also increase the number of trian-
gulations between vertices, also called vertex clus-
tering. The clustering coefficient characterizes the 
density of connections in the environment close 
to a vertex. It is the ratio between the total num-
ber of edges connecting its nearest neighbors and 
the total number of all possible edges between all 
these nearest neighbors. The characteristic clus-
tering coefficient, C, is the mean of the clustering 
coefficient of all vertices. Networks with lower L 
and higher C than random equivalent networks 
are known as small-world networks; so called by 
analogy with the small-world phenomenon used 
by Stanley Milgram (1967) to describe the struc-
ture of real social networks.  In a fully connected 
network the characteristic clustering coefficient 
is equal to 1, whereas in a random equivalent 
network (REN), it is proportional to its size. In 
contrast to both extremes, small-world networks 
are highly clustered-like regular networks, but 
with a small characteristic path length like ran-
dom ones (Fig. 3).

The easiest way to assess the presence of the 
small-world effect in an anatomical network is 

by comparing its C and L values with those of 
random equivalent networks; a ratio higher than 
1 indicates that the network presents the small-
world effect. RENs have the same number of ver-
tices, edges, and average degree of links per node 
than our network. Because a random network is 
only one member of a statistical ensemble of all 
possible realizations, we have to use a sample of 
such RENs for our comparisons. However, as we 
pointed out for the degree distribution, the small 
size of most anatomical networks makes small-
world recognition sometimes difficult. Some 
authors have solved this problem for real networks 
in an heuristic way (Dunne et al., 2002); by plot-
ting the C ratios as a function of size, they showed 
that small-world networks follow a unique linear 
(C=edges/vertices) relationship that diverges from 
the one expected for random networks (C=edge/
vertices2). Thus, networks that follow this linear 
relation would be expected to be small-world, 
even though, as noted before, the C and L ratios 
are not greater than 1. An anatomical network 
showing a small world structure will likely have 
few hub bones that are more connected and many 
poorly connected ones; if this is so, this kind of 
arrangement would provide robustness to random 
loss of bones during evolution.

Fig. 3 - The small-world organization is a stage 
between regularity and randomness. It can be 
generated from a regular stage by random re-
wiring of edges until reaching full randomness 
(Watts & Strogatz, 1998). The small-world is 
characterized by a higher clustering coefficient 
than in regular and random networks, and a 
similar –but often slightly shorter– characteris-
tic path length than in random networks.
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Network Resilience
Many real networks show a kind of integrity 

robustness against vertices removal, also called 
network resilience. The effect of vertices deletion 
in network cohesiveness may be traced on differ-
ent network parameters; the most common is the 
characteristic path length, but others may also be 
good measures, in particular cases such as clus-
tering coefficient, diameter, or density. In gen-
eral, any vertex deletion may lead to an increase 
in path lengths, and after successive deletions 
most network vertices become disconnected and 
network integrity lost. The behavior of network 
resilience seems to vary depending on the network 
degree distribution, as well as the way in which 
vertices are removed. For example, in networks 
where edges are not homogeneously distributed, 
and few vertices attach most of the connections 
(i.e. exponential and scale-free distributions), the 
removal of such vertices have higher impact in 
the characteristic path length increase than the 
removal of poorly connected ones. Thus, most 
real networks have reported to be robust against 
random vertex deletion, but fragile to highly-
connected vertex deletion (Albert et al., 2000). 
Again, network size is important for statistical 
treatment of vertices removal because test con-
trols require random removals, and the probabil-
ity to randomly delete a highly connected node 
increases as network size decreases. The analysis 
of node removal in a network model of a skeletal 
system indicates which bones are more likely to 
be fused or lost along the course of evolution.

Detection of Modules and Motifs 
A widespread feature of almost all biologi-

cal networks is a structural organization in parts, 
or modules; groups of vertices more connected 
within the group than to other vertices outside 
the group. Although the definition of module 
may be very intuitive, procedures to detect them 
are numerous and complex, e.g. traditional hier-
archical clustering, optimization algorithms of 
modularity values, minimizing energy functions 
by spin-glass methods, or topological overlap of 
vertices (for extensive reviews about modular-
ity detection methods in networks see Danon et 

al., 2005; Fortunato, 2009; Porter et al., 2009). 
Differences in module detection methods come 
down to the precise definition of what it means 
to be “more connected” used to build module 
detection strategies and algorithms.

At a scale between vertices and modules, net-
works can be organized in small recurrent connec-
tivity patterns called motifs; minimal community 
structures composed of a few vertices that form 
the building blocks of networks. In undirected 
networks the simplest motifs are triangles and 
squares, whereas in directed networks most com-
mon motifs are one to three vertices loops. Some 
motifs are characteristic of a particular kind of 
networks, such as three-vertices-chain in food 
webs, diamonds in neural networks, and feed-for-
ward loops in genetic regulatory networks (Milo 
et al., 2002). In anatomical systems, such as the 
skull, triangular motifs have been found more fre-
quently, whereas serial, squared, and pentagonal 
motifs are also present but less frequent (Rasskin-
Gutman, 2003). It has been suggested that an iter-
ative assembly of such motifs may be responsible 
of the formation of network modules at a higher 
scale with characteristic biological meanings, 
hence, many efforts are devoted to identify such 
motifs and develop network growing algorithms 
to simulate their formation (Zhang et al., 2005).

Network Models to tackle 
Morphological Integration and 
Modularity

Integration and modularity are two concepts 
strongly linked in biological systems as two faces 
of the same coin; modules appear as a conse-
quence of heterogeneous integration in a system 
(Bastir, 2008). The uniting principle of modular-
ity refers to the pattern of connectedness in which 
elements are grouped into highly connected 
groups that are more loosely connected to other 
such groups (Rasskin-Gutman, 2003; Wagner 
et al., 2007; for general reviews of the modular-
ity concept, see Callebaut & Rasskin-Gutman, 
2003; Klingenberg, 2004; 2008; Schlosser & 
Wagner, 2004). Similarly, the network definition 
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of mod ule can match the one used in mor phology, 
in which modules are defined as parts that have 
more or stronger connections among themselves 
than with other parts of the same system, with 
which they hold fewer or weaker connections (see 
chapters 8-11of Callebaut and Rasskin-Gutman, 
2006; and, more recently, Klingenberg, 2010). It 
will be very interesting to check if detected net-
work modules and motifs fit in with morpho-
logical modules, or anatomical regions, assessed 
by other criteria, such as developmental origin, 
genetic determination, functional activity, or evo-
lutionary behavior. Indeed, our preliminary results 
using such approach indicate that network mod-
ules in the human skull network strongly resem-
ble the facial and cranial vault modules assessed by 
functional modules.

Whereas integration can be measured directly 
by network parameters values, the organization 
of connectivity patterns are characterized quali-
tatively by comparing degree distribution func-
tions with those of theoretical models; such as 
Poisson, linear, exponential, or potential. For 
example, a distribution function that follows 
a power-law is characteristic of networks with a 
scale-free structure, whereas random networks 
have a Poisson distribution. The fitting of ana-
tomical networks to any theoretical model reveal 
several testable properties, such as the tolerance to 
structural changes, i.e. network resilience, which 
is achieved by anatomical systems during devel-
opment and evolution. These degree distribution 
functions are dependent on the growth rules of 
the networks, such as preferential attachment, 
i.e. the more connections a vertex already has, 
the more connections will attach during network 
growth. Thus, different network parameters allow 
characterizing different aspects of morphological 
integration during evolution and development at 
the level of connectivity between anatomical ele-
ments. Indeed, such organizational traits have var-
ied during the evolution of anatomical structures. 
In the tetrapod skull they seem to follow a trend 
of increasing integration pointed out by the den-
sity of connections in the skull networks of dif-
ferent species (unpublished results). Moreover, we 
have found that tetrapod skulls fit right-skewed 

distributions, i.e., they are characterized by pre-
senting few highly connected bones (hubs) and 
many poorly connected ones, by which the skulls 
achieved robustness to random failures.

Although general network organization is 
conservative within taxa, intraspecific variation 
among individuals is also present. See for exam-
ple in Figure 4 the variation present in the pte-
rion region among hominid skulls or the presence 
of supernumerary bones (Berry & Berry, 1967). 
These features characterize patterns of connec-
tivity at an individual level; but also at a popula-
tion level since some of these patterns are herit-
able (Wang et al., 2006). Thus, integration and 
modularity in anatomical networks can be traced 
in population distributions, as well as in taxa evo-
lution, within an unique comparative framework.

Concluding Remarks

The use of network analysis has grown in 
disparate fields such as genetics, systems biology, 

Fig. 4 - Variation of the local network pattern 
according to the four pterion shape types in 
humans: (A) Sphenoparietal, (B) Frontparietal, 
(C) Stellate, and (D) Epipteric that also has a 
supernumerary bone located in the intersection 
of the sphenoid, frontal, temporal, and parietal 
bones.



182 Network models in anatomical systems

and ecology, and this has been facilitated by the 
intense theoretical research in graph theory in the 
last decades. This multidisciplinary synergy occurs 
because network theory enables the study of com-
plex systems by analyzing relational properties as 
connections in a simpler manner. A quantitative 
characterization of anatomical systems by means 
of network theory brings out important features 
of its structural organization, such as morphologi-
cal integration and modularity. Since similarities 
in the organization of systems reflect similarities 
in the generative process (Wutchy et al., 2006), 
the use of network theory in anatomy can enhance 
our understanding of the generation of form dur-
ing evolution and development, in many complex 

structures. In a broader conceptual context, net-
works offer a unique methodology applicable to 
systems at all scales, whether they are biological 
or non-biological. This multi-scale framework can 
address causal and compositional relationships 
between levels of complexity, helping to highlight 
useful information about the rules that organize 
them (Rasskin-Gutman & Esteve-Altava, 2009).
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     Info on the web

There are many programs designed for analysis and visualization of networks. 
The following are just a small sample.

http://pajek.imfm.si/doku.php
PAJEK is a classic program for analysis and visualization of large networks. This software is mainly 
devoted to social networks, including several common routine such as block modeling, hierarchical 
clustering, or coloring. It is of easy use, with an extensive documentation. 

http://nwb.slis.indiana.edu
Network Workbench Toolkit is a very friendly network analysis, modeling, and visualization tool. It 
performs basic network analyses (e.g. density, cluster, or paths) but more complex routines related to 
modularity are not implemented. It is a standalone desktop application requiring Java 1.4+ JRE, 
running on Windows, Mac, and Linux platforms.

http://www.mathworks.com/products/neuralnet
Neural Network Toolbox™ provides tools for designing, implementing, visualizing, and simulating 
neural networks in MATLAB. In order to use this platform, some previous knowledge is required. 
Neural Network Toolbox supports feed-forward networks, radial basis networks, dynamic networks, 
self-organizing maps, and many others.

http://igraph.sourceforge.net
Igraph is a free software package for creating and manipulating undirected and directed graphs. It 
includes implementations for classic graph theory problems like minimum spanning trees and network 
flow, and also implements algorithms for some recent network analysis methods, like community 
structure search. It can be installed as a C library, R package, Python extension module, and Ruby 
extension. Previous training in these platforms is needed.
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